Abstract:
A plastic-molded-type semiconductor device is provided wherein two semiconductor chips, having main surfaces on which electrodes and circuits are formed, are arranged to face each other. A lead frame is placed between these two semiconductor chips and electrically connected to their electrodes, and a plastic package is formed by plastic-sealing the above components. To provide for secure and convenient electrical connections between the electrodes on the semiconductor chips and the lead frame, wiring patterns are provided on the main surfaces of the semiconductor chips through the intermediation of insulating films. With this structure, it is possible for two large-sized semiconductor chips having electrodes in their middle sections to be encased in a single, relatively thin package.
Abstract:
A semiconductor plastic package, more particularly a preferred package structure and method for making a BGA package. A resin sealed BGA package where a supporting frame which fixedly supports semiconductor parts; i.e., an IC chip, a circuit board, or a circuit film, is sealed with resin, using a mold, which is composed of an upper mold half and a lower mold half with the lower mold half having a plurality of projections, one at a position corresponding to each of the external terminals. The mold has a divisional structure which has an air vent between the divisional elements thereof.
Abstract:
An electronic component unit is provided with two electronic components which are disposed in parallel with each other and each of which has an internal electric circuit therein. Electrode pads are provided on the opposed surfaces of the two electronic components and are electrically connected to the internal electric circuits. The pads on one of the electronic components are respectively electrically and mechanically connected to the corresponding pads on the other electronic component by solder bumps. The areas of the pads increase or decrease stepwise in the direction from the central portions toward the outer peripheral edges of the two electronic components, while the volumes of the solder bumps are constant. Alternatively, the volumes of the solder bumps decrease or increase in the direction from the central portions toward the outer peripheral edges of the two electronic components, while the areas of all pads are constant. Each of the pads of the two electronic components is bonded to an associated solder bump over the whole area of the pad, whereby the shapes of the solder bumps respectively connected to the pads of the two electronic components change in the direction from the central portions toward the outer peripheral edges of the two electronic components to provide the solder bumps with different durabilities to stress, thereby assuring high reliability of the connection between the two electronic components.
Abstract:
A plastic-molded-type semiconductor device includes a plurality of semiconductor chips, metallic wires connected to the semiconductor chips, leads connected to the metallic wires, and an insulating member interposed between the semiconductor chips and sealed in a resin member. Circuit formed surfaces of the semiconductor chips are directed in the same direction, and one or more of the semiconductor chips serve as a base on which the other semiconductor chips are mounted through the insulating member. One ends of the leads are bonded to the insulating member, and electrodes pad of each semiconductor chip are not covered by the other semiconductor chips, the insulating member and the leads, and therefore are exposed to the surface of the insulating member. In this device, the provision of a tab is omitted, and the laminated chips can be contained in a package thinner than a conventional package. Since the circuit formation surfaces of all of the chips are directed in the same direction, all of the electrical connections can be made by wire bonding from one direction.
Abstract:
A plastic-molded-type semiconductor device having a high degree of integration encases a plurality of semiconductor chips in a package unit with each chip situated perpendicular to the substrate for mounting. On a surface of each chip containing circuits or on a reverse surface of the same, a lead frame is attached with an insulating material interposed therebetween. The chip and lead frame are connected with each other by using wire. The lead frame is arranged perpendicularly to another lead frame provided in parallel and connected therewith by welding. A printed circuit board may be used in place of said latter lead frame. By arranging the chips in projections made of resin, the thermal resistance of the semiconductor device is decreased. The present invention is particularly effective for a memory IC.
Abstract:
A semiconductor plastic package, more particularly a preferred package structure and method for making a BGA package. A resin sealed BGA package where a supporting frame which fixedly supports semiconductor parts; i.e., an IC chip, a circuit board, or a circuit film, is sealed with resin, using a mold which is composed of an upper mold half and a lower mold half with the lower mold half having a plurality of projections, one at a position corresponding to each of the external terminals. The mold has a divisional structure which has an air vent between the divisional elements thereof.
Abstract:
A semiconductor device, provided in a plastic encapsulated package, having a semiconductor chip, a lead and a member for electrically connecting them together. The semiconductor device has one or more first holes respectively extending from one surface of the package to a first side of the lead which is provided inside of the package, and has one or more second holes formed which are aligned with the first holes, respectively, in a manner such that each second hole is extended from the opposing surface of the package to a corresponding location on a second side of the lead and is aligned with a corresponding, opposing first hole, in the package, extending to the first side of the lead. These holes are provided as a plurality of sets of individual pairs of aligned holes respectively extending inwardly, from opposing surfaces of the package, to opposite sides of the corresponding leads. In the device the leads or the leads with resin act as partitions thereby effecting isolation between the first and second holes of each pair aligned holes.
Abstract:
In a package for DRAM, plastic is included between the common signal inner leads (bus bar inner leads) and insulating films arranged in the central part of a semiconductor chip. Thus, the deformation of plastic at the upper edge of the common signal inner leads is reduced and no great stress is generated at this portion. Accordingly, plastic cracking can be prevented.
Abstract:
A semiconductor plastic package, more particularly a preferred package structure and method for making a BGA package. A resin sealed BGA package where a supporting frame which fixedly supports semiconductor parts; i.e., an IC chip, a circuit board, or a circuit film, is sealed with resin, using a mold which is composed of an upper mold half and a lower mold half with the lower mold half having a plurality of projections, one at a position corresponding to each of the external terminals. The mold has a divisional structure which has an air vent between the divisional elements thereof.
Abstract:
A semiconductor plastic package, more particularly a preferred package structure and method for making a BGA package. A resin sealed BGA package where a supporting frame which fixedly supports semiconductor parts; i.e., an IC chip, a circuit board, or a circuit film, is sealed with resin, using a mold which is composed of an upper mold half and a lower mold half with the lower mold half having a plurality of projections, one at a position corresponding to each of the external terminals. The mold has a divisional structure which has an air vent between the divisional elements thereof.