摘要:
A method of fabricating semiconductor devices may include forming a mold structure on a lower layer, the mold structure including an etch stop layer doped at a first impurity concentration, a lower mold layer doped at a second impurity concentration, and an undoped upper mold layer. The method may include forming a trench exposing the lower layer in the mold structure using dry etching, extending a width of the trench in the etch stop layer using wet etching, and forming a first conductive pattern in the extended width trench, wherein an etch rate of the etch stop layer with respect to the dry etching may be smaller than an etch rate of the lower mold layer with respect to the dry etching, and an etch rate of the etch stop layer with respect to the wet etching may be proportional to the first impurity concentration.
摘要:
A method of fabricating semiconductor devices may include forming a mold structure on a lower layer, the mold structure including an etch stop layer doped at a first impurity concentration, a lower mold layer doped at a second impurity concentration, and an undoped upper mold layer. The method may include forming a trench exposing the lower layer in the mold structure using dry etching, extending a width of the trench in the etch stop layer using wet etching, and forming a first conductive pattern in the extended width trench, wherein an etch rate of the etch stop layer with respect to the dry etching may be smaller than an etch rate of the lower mold layer with respect to the dry etching, and an etch rate of the etch stop layer with respect to the wet etching may be proportional to the first impurity concentration.
摘要:
A semiconductor device having a dielectric layer with improved electrical characteristics and associated methods, the semiconductor device including a lower metal layer, a dielectric layer, and an upper metal layer sequentially disposed on a semiconductor substrate and an insertion layer disposed between the dielectric layer and at least one of the lower metal layer and the upper metal layer, wherein the dielectric layer includes a metal oxide film and the insertion layer includes a metallic material film.
摘要:
Methods of fabricating a semiconductor device include forming a deposited film on a semiconductor substrate in a process chamber by repeatedly forming unit layers on the semiconductor substrate. The unit layer is formed by forming a preliminary unit layer on the semiconductor substrate by supplying a process material including a precursor material and film-control material into the process chamber, purging the process chamber, forming a unit layer from the preliminary unit layer, and again purging the process chamber. The precursor material includes a central atom and a ligand bonded to the central atom, and the film-control material includes a hydride of the ligand.
摘要:
A method of forming an oxide layer. The method includes: forming a layer of reaction-inhibiting functional groups on a surface of a substrate; forming a layer of precursors of a metal or a semiconductor on the layer of the reaction-inhibiting functional groups; and oxidizing the precursors of the metal or the semiconductor in order to obtain a layer of a metal oxide or a semiconductor oxide. According to the method, an oxide layer having a high thickness uniformity may be formed and a semiconductor device having excellent electrical characteristics may be manufactured.
摘要:
A semiconductor device including a multilayer dielectric film and a method for fabricating the semiconductor device are disclosed. The multilayer dielectric film includes a type-one dielectric film having a tetragonal crystalline structure, wherein the type-one dielectric film comprises a first substance. The multilayer dielectric film also comprises a type-two dielectric film also having a tetragonal crystalline structure, wherein the type-two dielectric film comprises a second substance different from the first substance and a dielectric constant of the type-two dielectric film is greater than a dielectric constant of the type-one dielectric film.
摘要:
In a multilayer structure and a method of forming the same, a conductive layer including a metal nitride and a dielectric layer positioned on a surface of the conductive layer and having a high dielectric constant. The metal nitride comprises one of niobium, vanadium and compositions thereof. Thus, the EOT and leakage current of the multilayer structure may be sufficiently improved.
摘要:
Provided is a semiconductor device including an insulating layer of a cubic system or a tetragonal system, having good electrical characteristics. The semiconductor device includes a semiconductor substrate including an active region, a transistor that is formed in the active region of the semiconductor substrate, an interlevel insulating layer that is formed on the semiconductor substrate and a contact plug that is formed in the interlevel insulating layer and that is electrically connected to the transistor. The semiconductor device may include a lower electrode that is formed on the interlevel insulating layer and that is electrically connected to the contact plug, an upper electrode that is formed on the lower electrode and an insulating layer of a cubic system or a tetragonal system including a metal silicate layer. The insulating layer may be formed between the lower electrode and the upper electrode.
摘要:
A method of fabricating a phase-change random-access memory (RAM) device includes forming a chalcogenide material on a substrate. A bottom contact is formed under the chalcogenide material, the bottom contact comprising TiAlN. Forming the bottom contact includes performing an atomic layer deposition (ALD) process, the ALD process including introducing an NH3 source gas into a chamber in which the ALD process is being carried out, a flow amount of the NH3 gas being such that the resulting bottom contact has a chlorine content of less than 1 at %. The bottom contact can include TiAlN having a crystallinity in terms of full-width half-maximum (FWHM) of less than about 0.65 degree.
摘要:
A phase changeable memory cell array region includes a lower interlayer insulating layer disposed on a semiconductor substrate. The region also includes a plurality of conductive plugs disposed through the lower interlayer insulating layer. The region also includes a phase changeable material pattern operably disposed on the lower interlayer insulating layer, the phase changeable pattern covering at least two of the plurality of conductive plugs, wherein the phase changeable material pattern includes a plurality of first regions in contact with one or more of the plurality of conductive plugs and at least one second region interposed between the plurality of the first regions, wherein the at least one second region has a lower thermal conductivity than the plurality of first regions. The phase changeable memory cell array region also includes an upper interlayer insulating layer covering at least one of the phase changeable material pattern and the lower interlayer insulating layer. The region also includes conductive patterns disposed through the upper interlayer insulating layer and electrically connected to a plurality of predetermined regions of the plurality of first regions.