Abstract:
Physical vapor deposition processing chambers and methods of processing a substrate such as an EUV mask blank in a physical vapor deposition chamber are disclosed. An electric field and a magnetic field are utilized to deflect particles from a substrate being processed in the chamber.
Abstract:
An extreme ultraviolet (EUV) mask blank production system includes: a substrate handling vacuum chamber for creating a vacuum; a substrate handling platform, in the vacuum, for transporting an ultra-low expansion substrate loaded in the substrate handling vacuum chamber; and multiple sub-chambers, accessed by the substrate handling platform, for forming an EUV mask blank includes: a multi-layer stack, formed above the ultra-low expansion substrate, for reflecting an extreme ultraviolet (EUV) light, and an absorber layer, formed above the multi-layer stack, for absorbing the EUV light at a wavelength of 13.5 nm includes the absorber layer has a thickness of less than 80 nm and less than 2% reflectivity.
Abstract:
An extreme ultraviolet (EUV) mask blank production system includes: a substrate handling vacuum chamber for creating a vacuum; a substrate handling platform, in the vacuum, for transporting an ultra-low expansion substrate loaded in the substrate handling vacuum chamber; and multiple sub-chambers, accessed by the substrate handling platform, for forming an EUV mask blank includes: a multi-layer stack, formed above the ultra-low expansion substrate, for reflecting an extreme ultraviolet (EUV) light, and an absorber layer, formed above the multi-layer stack, for absorbing the EUV light at a wavelength of 13.5 nm includes the absorber layer has a thickness of less than 80 nm and less than 2% reflectivity.
Abstract:
Embodiments described herein provide methods and apparatus for forming graphitic carbon such as graphene on a substrate. The method includes providing a precursor comprising a linear conjugated hydrocarbon, depositing a hydrocarbon layer from the precursor on the substrate, and forming graphene from the hydrocarbon layer by applying energy to the substrate. The precursor may include template molecules such as polynuclear aromatics, and may be deposited on the substrate by spinning on, by spraying, by flowing, by dipping, or by condensing. The energy may be applied as radiant energy, thermal energy, or plasma energy.
Abstract:
A method of manufacture of an extreme ultraviolet reflective element includes: providing a substrate; forming a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer and a second reflective layer for forming a Bragg reflector; and forming a capping layer on and over the multilayer stack, the capping layer formed from titanium oxide, ruthenium oxide, niobium oxide, ruthenium tungsten, ruthenium molybdenum, or ruthenium niobium, and the capping layer for protecting the multilayer stack by reducing oxidation and mechanical erosion.
Abstract:
Embodiments of a portable electrostatic chuck for use in a substrate process chamber to support an ultra-thin substrate when disposed thereon are provided herein. In some embodiments, a portable electrostatic chuck may include a carrier comprising a dielectric material; an electrically conductive layer disposed on a top surface of the carrier; a dielectric layer disposed over the electrically conductive layer, such that the electrically conductive layer is disposed between the carrier and the dielectric layer; and at least one conductor coupled to the electrically conductive layer, wherein the portable electrostatic chuck is configured to electrostatically retain the ultra-thin substrate to the portable electrostatic chuck, wherein the portable electrostatic chuck is further configured to be handled and moved by substrate processing equipment outside of the substrate process chamber, and wherein the portable electrostatic chuck is sized to support large ultra-thin substrates.
Abstract:
A method of manufacture of an extreme ultraviolet reflective element includes: providing a substrate; forming a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer and a second reflective layer for forming a Bragg reflector; and forming a capping layer on and over the multilayer stack, the capping layer formed from titanium oxide, ruthenium oxide, niobium oxide, ruthenium tungsten, ruthenium molybdenum, or ruthenium niobium, and the capping layer for protecting the multilayer stack by reducing oxidation and mechanical erosion.
Abstract:
An EUV lithography system and method of manufacturing thereof includes: an EUV light source; a chuck being thermally conducting and smooth having a surface with a predetermined chuck flatness; and a reflective lens system for directing EUV light from the EUV light source over the surface of the chuck.
Abstract:
A monitoring and deposition control system and method of operation thereof including: a deposition chamber for depositing a material layer on a substrate; a sensor array for monitoring deposition of the material layer for changes in a layer thickness of the material layer during deposition; and a processing unit for adjusting deposition parameters based on the changes in the layer thickness during deposition.
Abstract:
Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.