摘要:
An electrode structure for a capacitor. The electrode structure includes a contact plug comprising an oxidation barrier 208 and a bottom electrode comprising a conductive adhesion-promoting portion 210 and an oxidation-resistant portion 204, the adhesion-promoting portion contacting the oxidation barrier of the contact plug. In further embodiments, the oxidation barrier and adhesion-promoting portion comprise Ti—Al—N.
摘要:
An embodiment of the present invention is a method of forming an ultra-thin dielectric layer, the method comprising the steps of: providing a substrate having a semiconductor surface; forming an oxygen-containing layer on the semiconductor surface; exposing the oxygen-containing layer to a nitrogen-containing plasma to create a uniform nitrogen distribution throughout the oxygen-containing layer; and re-oxidizing and annealing the layer to stabilize the nitrogen distribution, heal plasma-induced damage, and reduce interfacial defect density. This annealing step is selected from a group of four re-oxidizing techniques: Consecutive annealing in a mixture of H2 and N2 (preferably less than 20% H2), and then a mixture of O2 and N2 (preferably less than 20% O2); annealing by a spike-like temperature rise (preferably less than 1 s at 1000 to 1150° C.) in nitrogen-comprising atmosphere (preferably N2/O2 or N2O/H2); annealing by rapid thermal heating in ammonia of reduced pressure (preferably at 600 to 1000° C. for 5 to 60 s); annealing in an oxidizer/hydrogen mixture (preferably N2O with 1% H2) for 5 to 60 s at 800 to 1050° C.
摘要翻译:本发明的一个实施例是形成超薄介电层的方法,该方法包括以下步骤:提供具有半导体表面的基板; 在半导体表面上形成含氧层; 将含氧层暴露于含氮等离子体以在整个含氧层中产生均匀的氮分布; 并重新氧化和退火层以稳定氮分布,治愈等离子体诱导的损伤并降低界面缺陷密度。该退火步骤选自四种再氧化技术:在H2和N2的混合物中连续退火 (优选小于20%H 2),然后是O 2和N 2(优选小于20%O 2)的混合物;通过尖峰状升温(优选在1000至1150℃下优选小于1秒)在氮气中退火 (优选为N 2 / O 2或N 2 O / H 2);通过在减压的氨中快速热加热(优选在600至1000℃下5至60秒)进行退火;在氧化剂/氢气混合物(优选N 2 O 1%H 2)在800至1050℃下进行5至60秒。
摘要:
A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation. The enhanced yield strength of the substrate mitigates plastic deformation of the transistor due to the strain inducing layer.
摘要:
Integrated circuits (ICs) commonly contain pre-metal dielectric (PMD) liners with compressive stress to increase electron and hole mobilities in MOS transistors. The increase is limited by the thickness of the PMD liner. The instant invention is a multi-layered PMD liner in an integrated circuit which has a higher stress than single layer PMD liners. Each layer in the inventive PMD liner is exposed to a nitrogen-containing plasma, and which has a compressive stress higher than 1300 MPa. The PMD liner of the instant invention is composed of 3 to 10 layers. The hydrogen content of the first layer may be increased to improve transistor properties such as flicker noise and Negative Bias Temperature Instabilty (NBTI). An IC containing the inventive PMD liner and a method for forming same are also claimed.
摘要:
The present invention provides a method for fabricating a dual gate semiconductor device. In one aspect, the method comprises forming a nitridated, high voltage gate dielectric layer over a semiconductor substrate, patterning a photoresist over the nitridated, high voltage gate dielectric layer to expose the nitridated, high voltage dielectric within a low voltage region, wherein the patterning leaves an accelerant residue on the exposed nitridated, high voltage gate dielectric layer, and subjecting the exposed nitridated, high voltage dielectric to a high vacuum to remove the accelerant residue.
摘要:
The present invention provides a method for fabricating a dual gate semiconductor device. In one aspect, the method comprises forming a nitridated, high voltage gate dielectric layer over a semiconductor substrate, patterning a photoresist over the nitridated, high voltage gate dielectric layer to expose the nitridated, high voltage dielectric within a low voltage region wherein the patterning leaves an accelerant residue on the exposed nitridated, high voltage gate dielectric layer. The method further includes subjecting the exposed nitridated, high voltage dielectric to a plasma to remove the accelerant residue.
摘要:
The present invention teaches the formation of CMOS transistors using interfacial nitrogen at the interface between the lightly doped extension regions and an overlying insulating layer in combination with a capping layer of silicon nitride, both prior to the final source/drain anneal. Doses and energies may be increased for the P-channel lightly-doped drain, source and drain regions. The resulting transistors exhibit desirably high drive current and low off-state leakage current and overlap capacitance.