摘要:
The present invention relates to a method of manufacturing a multi-layered printed circuit board which can decrease the cost and time required to produce the printed circuit board and can improve heat radiation characteristics and bending strength.
摘要:
Disclosed is a radiant heat printed circuit board, which has improved heat-radiating properties and reliability, and a method of fabricating the same.
摘要:
A light emitting device package and a method for manufacturing the same are provided. The light emitting device package comprises a package body comprising a cavity at an upper portion; a first and second metal layers on the cavity of the package body; an open area recessed in the cavity; a first metal plate disposed in the open area and spaced apart from the first and second metal layers; a semiconductor device disposed on the first metal plate and electrically connected to at least one of the first and the second metal layers; and a resin material in the cavity.
摘要:
Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device may include a reflective metal support including at least two pairs of first and second reflective metal layers, a light emitting structure layer including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor and the second conductive type semiconductor layer on the reflective metal support, and an electrode on the light emitting structure layer. The reflective metal support includes at least one of Al, Ag, an APC(Ag—Pd—Cu) alloy, and an Au—Ni alloy.
摘要:
A light emitting device according to the embodiment includes a conductive support substrate including plural pairs of first and second conductive layers; alight emitting structure layer including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers on the conductive support substrate; and an electrode on the light emitting structure layer. The first and second conductive layers are formed by using the same material.
摘要:
A light emitting device package comprises: a substrate; first and second conduction members on the substrate; a light emitting diode on the substrate, the light emitting diode being electrically connected with the first and second conduction members; and a phosphor layer on the light emitting diode.
摘要:
Disclosed is a light emitting device package. The light emitting device package includes a semiconductor substrate comprising a first surface at a first depth from an upper surface of the semiconductor substrate and a second surface at a second depth from the first surface; and a light emitting part on the second surface of the semiconductor substrate.
摘要:
A light emitting device package comprises a substrate, an electrode on the substrate, a light emitting device on the substrate and electrically connected to the electrode layer, and a pattern enclosing the light emitting device.
摘要:
Disclosed is a light emitting device package. The light emitting device package includes a body; first and second electrode layers on the body; a light emitting device electrically connected to the first and second electrode layers on the body; a luminescent layer on the light emitting device; and an encapsulant layer including particles on the luminescent layer, wherein an effective refractive index of the encapsulant layer has a deviation of 10% or less with respect to an effective refractive index of the luminescent layer.
摘要:
A light emitting device having a vertical structure, a package thereof and a method for manufacturing the same, which are capable of damping impact generated in a substrate separation process, and achieving an improvement in mass productivity, are disclosed. The method includes growing a semiconductor layer having a multilayer structure over a substrate, forming a first electrode on the semiconductor layer, separating the substrate including the grown semiconductor layer into unit devices, bonding each of the separated unit devices on a sub-mount, separating the substrate from the semiconductor layer, and forming a second electrode on a surface of the semiconductor layer exposed in accordance with the separation of the substrate.