Abstract:
This invention relates to a method and a means for packaging integrated circuits, especially relates to a heat sink in the operating integrated circuit packages. The heat sink is bonded on the lead frame by a tap and take advantage of the length between the heat sink and the first mold packaged materials at the first axis to be about equal to the length between the chip and the second mold packaged materials at the first axis to prevent producing voids form unbalanceable thermal mold flow. The heat sink can also dissipating heat from the lead frame to others spaces in the integrated circuit packages. This method and means can prevent delaminating and cracking occurring in the chip and increasing the qualities in integrated circuits.
Abstract:
A dual-dies packaging structure is provided. The dual-dies packaging structure includes a lead frame, which further includes a die pad and several lead legs, in which the die pad includes an upper surface and a lower surface. A first die, having several first bonding pads, is fixed on the upper surface of the die pad by, for example, gluing it. The first bonding pads remain exposed. A second die, having several second bonding pads, is fixed on the lower surface by, for example, gluing it. The second bonding pads remain exposed. A bumping redistribution structure layer is located on the second die so as to redistribute each of the second bonding pads to a pseudo-bonding pad. Each pseudo-bonding pad has its proper location with respect to the first bonding pads. Thus, when several bonding wires are used to bond the first bonding pads and the pseudo-bonding pads to the lead legs, bonding wires can be regularly and simply put on without crossing or entangling to each other.
Abstract:
A method of fabricating a direct contact through hole type wafer. Devices and contact plugs are formed in one side of a silicon-on-insulator substrate, and multilevel interconnects are formed over the side of the silicon-on-insulator substrate. The multilevel interconnects are coupled with the devices and the contact plugs. Bonding pads, which couples with the multilevel interconnects, are formed over the multilevel interconnects. An opening is formed on the other side of the silicon-on-insulator substrate to expose the contact plugs. An insulation layer, a barrier layer and a metal layer are formed in sequence in the opening. Bumps are formed on the bonding pads and the metal layer, respectively.
Abstract:
A dual-dies packaging structure is provided. The dual-dies packaging structure includes a lead frame, which further includes a die pad and several lead legs, in which the die pad includes an upper surface and a lower surface. A first die, having several first bonding pads, is fixed on the upper surface of the die pad by, for example, gluing it. The first bonding pads remain exposed. A second die, having several second bonding pads, is fixed on the lower surface by, for example, gluing it. The second bonding pads remain exposed. A bumping redistribution structure layer is located on the second die so as to redistribute each of the second bonding pads to a pseudo-bonding pad. Each pseudo-bonding pad has its proper location with respect to the first bonding pads. Thus, when several bonding wires are used to bond the first bonding pads and the pseudo-bonding pads to the lead legs, bonding wires can be regularly and simply put on without crossing or entangling to each other.
Abstract:
A method for determining failure rate and selecting a best burn-in time is disclosed. The method comprises the following steps. First of all, integrate circuits are provided. Then a life-time testing process is performed, wherein a failure rate versus testing time relation is established by measuring the life-time of each integrated circuit under a testing environment, wherein an acceleration factor function also is established under the testing environment. Next a simulating process that uses a testing time function is performed to simulate the failure rate versus testing time relation. Then a transforming process that uses the acceleration factor function is performed to transform the testing time function into a real time function. Finally, an integrating process is performed to integrate the real time function through a calculating region to acquire an accumulated failure rate real time function.
Abstract:
A backplane with multiple arrayed electrodes positioned on the backplane is provided in a method of fabricating a liquid crystal (LC) panel. The method begins with coating an alignment layer on the backplane. By performing a rubbing process, multiple alignment trenches are formed on the alignment layer. A photoresist layer is then formed on the alignment layer. By performing a lithography process, both a side frame, having at least one slit, and multiple photoresist spacers(PR spacers) are formed on the alignment layer. A gasket seal is coated on the side frame and the multiple PR spacers. By performing a lamination process, a transparent conductive layer is laminated on the backplane. A liquid crystal filling (LC filling) processis then performed to fill a cell gap between the backplane and the transparent conductive layer with liquid crystal. Finally, an end sealing process is performed to seal the slit.
Abstract:
An architecture for wafer scale memories and a placement method replaces defective chips with spare chips in a memory module so as to provide minimum critical signal delay. The SDRAM memory chips are classified into normal chips and spare chips, where the normal chips are formed into groups such as rows or columns, and the spare chips are used to replace defective normal chips. A delay model for metal lines and vias is used to compute the signal delay for placement and routing. The placement problem is modeled as a bipartite graph and solved using a branch and bound algorithm to obtain a chip replacement configuration having the shortest critical signal delay. Also described is a hierarchical routing approach, which classifies the signals into different types and levels of signals. During fabrication, the replacement of defective chips with spare chips is accomplished by using two extra conductive layers and patterning the extra layers using a mask that is independent of the defect distribution of a particular wafer.
Abstract:
A direct contact through hole type wafer structure. Both sides of a wafer have devices and contacts. The contacts are coupled with the devices. Bumps are formed on the contacts, respectively.
Abstract:
A repairable multi-chip module which is used when failures are found after an electrically and functionally testing is described. A substrate is provided. At least a first normal die having a plurality of first pads is mounted on the substrate, wherein the first normal die is surrounded by the pads. At least a failed die is mounted on the substrate. Several third pads and fourth pads are mounted on the substrate, wherein the third pads surrounds the first normal die and the failed die and the fourth pads surrounds the first pads. At least a second normal die having a plurality of second pads is stacked over the failed die. Several conductive wires are electrically connecting the first pads on the first normal die and the third pads. Several reworking conductive wires are electrically connecting the second pads on the second normal die and the fourth pads.
Abstract:
A circuit is provided for use on a wafer formed with a plurality of dice on each of which a memory device, such as a DRAM (dynamic random access memory) device to perform a burn-in operation on the memory device so as to test the reliability thereof. By this circuit, a plurality of pads are formed in the scribe lines that are used as reference marks in the cutting apart of the dice. These pads are used to transfer an externally generated burn-in enable signal and a DC bias voltage to each memory device. Since the pads for burn-in wiring are formed in the scribe lines, they will not take additional space on the dice where each memory device is formed. The burn-in operation is more convenient, quick, and cost-effective to implement.