摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
There is provided a chamber open to the outside through openings through which a solder-adhered object is passed and the chamber having a heating/melting area, a carrying mechanism for carrying the solder-adhered object into the heating/melting area, a formic-acid supplying means for supplying a formic acid into the heating/melting area, an exhausting means for exhausting a gas from the heating/melting area and its neighboring area to create a lower pressure area in the heating/melting area as compared to the pressure of outside the chamber, heating means for heating directly or indirectly the solder-adhered object in the heating/melting area, and an air-stream suppressing means for disturbing a gas flow between the heating/melting area and the carrying areas. Accordingly, there can be provided a solder jointing system for jointing solder layers of a semiconductor device, an electronic device, or the like to the wirings or the pads, which is capable of having a high processing ability and preventing re-oxidation.
摘要:
The present invention relates to a method of manufacturing a semiconductor substrate including the back grind step, the dicing step, the pick up step, and the die bonding step of the wafer; and to a semiconductor substrate jig used in such method. The object of the present invention is to mitigate the effect and to prevent damage caused by the lack of strength in thinned semiconductor substrates. A jig with an outer frame 21, and a rubber film 22 arranged within the outer frame 21 and having increasing and decreasing body size while deforming its shape by supplying air therein are provided. As the volume of the rubber film 22 increases, the wafer-fixing jig 20 deforms the rubber film and allows the tapes 2 and 6 arranged between the wafer 1 and the rubber film 22A to be pushed toward the wafer 1 gradually from the center outward. The attachment step, the back grind step, the tape reapplication step, the pick up step and the die bonding step are conducted using such wafer-fixing jig.
摘要:
The present invention relates to a method of manufacturing a semiconductor substrate including the back grind step, the dicing step, the pick up step, and the die bonding step of the wafer; and to a semiconductor substrate jig used in such method. The object of the present invention is to mitigate the effect and to prevent damage caused by the lack of strength in thinned semiconductor substrates. A jig with an outer frame 21, and a rubber film 22 arranged within the outer frame 21 and having increasing and decreasing body size while deforming its shape by supplying air therein are provided. As the volume of the rubber film 22 increases, the wafer-fixing jig 20 deforms the rubber film and allows the tapes 2 and 6 arranged between the wafer 1 and the rubber film 22A to be pushed toward the wafer 1 gradually from the center outward. The attachment step, the back grind step, the tape reapplication step, the pick up step and the die bonding step are conducted using such wafer-fixing jig.
摘要:
The present invention relates to a method of manufacturing a semiconductor substrate including the back grind step, the dicing step, the pick up step, and the die bonding step of the wafer; and to a semiconductor substrate jig used in such method. The object of the present invention is to mitigate the effect and to prevent damage caused by the lack of strength in thinned semiconductor substrates. A jig with an outer frame 21, and a rubber film 22 arranged within the outer frame 21 and having increasing and decreasing body size while deforming its shape by supplying air therein are provided. As the volume of the rubber film 22 increases, the wafer-fixing jig 20 deforms the rubber film and allows the tapes 2 and 6 arranged between the wafer 1 and the rubber film 22A to be pushed toward the wafer 1 gradually from the center outward. The attachment step, the back grind step, the tape reapplication step, the pick up step and the die bonding step are conducted using such wafer-fixing jig.
摘要:
The present invention relates to a method of manufacturing a semiconductor substrate including the back grind step, the dicing step, the pick up step, and the die bonding step of the wafer; and to a semiconductor substrate jig used in such method. The object of the present invention is to mitigate the effect and to prevent damage caused by the lack of strength in thinned semiconductor substrates. A jig with an outer frame 21, and a rubber film 22 arranged within the outer frame 21 and having increasing and decreasing body size while deforming its shape by supplying air therein are provided. As the volume of the rubber film 22 increases, the wafer-fixing jig 20 deforms the rubber film and allows the tapes 2 and 6 arranged between the wafer 1 and the rubber film 22A to be pushed toward the wafer 1 gradually from the center outward. The attachment step, the back grind step, the tape reapplication step, the pick up step and the die bonding step are conducted using such wafer-fixing jig.
摘要:
The present invention relates to a method of manufacturing a semiconductor substrate including the back grind step, the dicing step, the pick up step, and the die bonding step of the wafer; and to a semiconductor substrate jig used in such method. The object of the present invention is to mitigate the effect and to prevent damage caused by the lack of strength in thinned semiconductor substrates. A jig with an outer frame 21, and a rubber film 22 arranged within the outer frame 21 and having increasing and decreasing body size while deforming its shape by supplying air therein are provided. As the volume of the rubber film 22 increases, the wafer-fixing jig 20 deforms the rubber film and allows the tapes 2 and 6 arranged between the wafer 1 and the rubber film 22A to be pushed toward the wafer 1 gradually from the center outward. The attachment step, the back grind step, the tape reapplication step, the pick up step and the die bonding step are conducted using such wafer-fixing jig.