摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
摘要:
There is provided a chamber open to the outside through openings through which a solder-adhered object is passed and the chamber having a heating/melting area, a carrying mechanism for carrying the solder-adhered object into the heating/melting area, a formic-acid supplying means for supplying a formic acid into the heating/melting area, an exhausting means for exhausting a gas from the heating/melting area and its neighboring area to create a lower pressure area in the heating/melting area as compared to the pressure of outside the chamber, heating means for heating directly or indirectly the solder-adhered object in the heating/melting area, and an air-stream suppressing means for disturbing a gas flow between the heating/melting area and the carrying areas. Accordingly, there can be provided a solder jointing system for jointing solder layers of a semiconductor device, an electronic device, or the like to the wirings or the pads, which is capable of having a high processing ability and preventing re-oxidation.
摘要:
A semiconductor device includes a semiconductor element having a plurality of electrodes provided on one principal surface thereof and a wiring substrate having a conductive layer on an insulating substrate. The wiring substrate is arranged in a substantially U-shape along an outer edge of the semiconductor element. An end of the conductive layer of the wiring substrate is connected to the electrodes of the semiconductor element. The other end of the conductive layer extends in a direction opposite to the semiconductor element on the other principal surface side of the semiconductor element.
摘要:
A semiconductor device includes a semiconductor element having a plurality of electrodes provided on one principal surface thereof and a wiring substrate having a conductive layer on an insulating substrate. The wiring substrate is arranged in a substantially U-shape along an outer edge of the semiconductor element. An end of the conductive layer of the wiring substrate is connected to the electrodes of the semiconductor element. The other end of the conductive layer extends in a direction opposite to the semiconductor element on the other principal surface side of the semiconductor element.
摘要:
There is provided a reflective sheet made of self-sustaining porous sheet which comprises inert particles and a polyolefin and which has a porosity of 30 to 95% and a reflectivity at a wavelength of 550 nm of 60 to 120%. This reflective sheet can be reduced in thickness and weight while retaining sufficient reflectivity.
摘要:
A polymetaphenylene isophthalamide-based polymer porous film having a satisfactory porous structure that exhibits excellent gas permeability and heat resistance. It is produced by a process which comprises casting a dope of the polymetaphenylene isophthalamide-based polymer and coagulating it in a coagulating bath. The porous film may also contain inorganic whiskers, and a composite porous film may be formed in combination with a separate thermoplastic polymer film.
摘要:
Ferroelectric ceramics represented by xPbTiO.sub.3 -yPbZrO.sub.3 -zPb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3 -mSrTiO.sub.3 -nSnO.sub.2 -pZnO-qBi.sub.2 O.sub.3 -rX wherein x,y,z,m,n,p,q and r represent amounts by mole, respectively, with the proviso that x+y+z being 1, Z is at least one oxide selected from the group consisting of Dy.sub.2 O.sub.3, Ta.sub.2 O.sub.5, and Y.sub.2 O.sub.3, and wherein x is from 0.25 to 0.50, y is from 0.05 to 0.70, z is from 0.05 to 0.70, m is from 0 to 0.10, n is from 0 to 0.04, p is from 0 to 0.04, q is from 0 to 0.02 and r is from 0.005 to 0.02. The disclosed ferroelectric ceramics have increased relative dielectric constant and/or electromechanical coupling factor, and are suitable for use as actuators.