Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
There is provided a laser chamber housing a pair of discharge electrodes and a gas circulation fun, the laser chamber including: a magnetic bearing configured to support a shaft of the gas circulation fan, with the shaft being in non-contact with the magnetic bearing; and a touchdown bearing configured to operate as a bearing when the magnetic bearing is uncontrollable, the touchdown bearing being provided with solid lubricant configured of one or more of an Au plating layer, a Ni-containing plating layer, and a Cu plating layer.
Abstract:
An optical device may include: an optical module disposed in a beam delivery path of a laser beam; a beam adjusting unit disposed in the beam delivery path for adjusting the beam delivery path of the laser beam; a measuring unit disposed in the beam delivery path for detecting the beam delivery path; and a control unit for controlling the beam adjusting unit based on a detection result of the beam delivery path of the laser beam detected by the measuring unit.
Abstract:
A laser unit may include a laser chamber including a pair of discharge electrodes that are opposed to each other in a first direction with an electrode gap interposed in between and are configured to provide a discharge width in a second direction, orthogonal to the first direction, smaller than the electrode gap; and an optical resonator including a first optical member and a second optical member that are opposed to each other in a third direction orthogonal to both the first direction and the second direction with the discharge electrodes interposed in between, and configured to amplify laser light generated between the discharge electrodes and output amplified laser light, the optical resonator satisfying the following expression to configure a stable resonator in the second direction: 0
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
A system includes a chamber, a laser beam apparatus configured to generate a laser beam to be introduced into the chamber, a laser controller for the laser beam apparatus to control at least a beam intensity and an output timing of the laser beam, and a target supply unit configured to supply a target material into the chamber, the target material being irradiated with the laser beam for generating extreme ultraviolet light.
Abstract:
Provided is an extreme ultraviolet light generating apparatus that may include: a chamber containing one or more kinds of gases; a light concentration optical system provided in an optical path of pulsed laser light outputted from a laser unit, and configured to concentrate the pulsed laser light into a concentrated beam; and an image pickup section provided at a position out of the optical path of the pulsed laser light, and configured to pick up a plasma emission image that is an image of plasma emission in the chamber. The plasma emission is caused by application of the concentrated beam to the one or more kinds of gases in the chamber.
Abstract:
A laser apparatus according to embodiments may include a laser chamber including a laser gain medium; a power source; a first electrode to which a voltage is applied from the power source and a second electrode that is grounded, the first and second electrodes being disposed in the laser chamber; and a connector connected to the power source, and supporting the first electrode in a way that allows the first electrode to move toward a side where the second electrode is disposed.
Abstract:
An EUV light source device properly compensates the wave front of laser beam which is changed by heat. A wave front compensator and a sensor are provided in an amplification system which amplifies laser beam. The sensor detects and outputs changes in the angle (direction) of laser beam and the curvature of the wave front thereof. A wave front compensation controller outputs a signal to the wave front compensator based on the measurement results from the sensor. The wave front compensator corrects the wave front of the laser beam to a predetermined wave front according to an instruction from the wave front compensation controller.