摘要:
The invention has an object to provide a charged particle beam device in which it is possible to perform proper beam adjustment while suppressing a decrease in MAM time, with a simple configuration without adding a lens, a sensor, or the like. In order to achieve the above object, according to the invention, there is provided a charged particle beam device including: an optical element which adjusts a charged particle beam emitted from a charged particle source; an adjustment element which adjusts an incidence condition of the charged particle beam with respect to the optical element; and a control device which controls the adjustment element, wherein the control device determines a difference between a first feature amount indicating a state of the optical element based on the condition setting of the optical element, and a second feature amount indicating a state where the optical element reaches based on the condition setting and executes adjustment by the adjustment element when the difference is greater than or equal to a predetermined value.
摘要:
A charged particle beam device is provided that performs proper beam adjustment while suppressing a decrease in MAM time, with a simple configuration without adding a lens, a sensor, or the like. The charged particle beam device includes: an optical element which adjusts a charged particle beam emitted from a charged particle source; an adjustment element which adjusts an incidence condition of the charged particle beam with respect to the optical element; and a control device which controls the adjustment element, wherein the control device determines a difference between a first feature amount indicating a state of the optical element based on the condition setting of the optical element, and a second feature amount indicating a state where the optical element reaches based on the condition setting and executes adjustment by the adjustment element when the difference is greater than or equal to a predetermined value.
摘要:
A charged particle beam apparatus with improved depth of focus and maintained/improved resolution has a charged particle source, an off-axis illumination aperture, a lens, a computer, and a memory unit. The apparatus acquires an image by detecting a signal generated by irradiating a sample with a charged particle beam caused from the charged particle source via the off-axis illumination aperture. The computer has a beam-computing-process unit to estimate a beam profile of the charged particle beam and an image-sharpening-process unit to sharpen the image using the estimated beam profile.
摘要:
A charged-particle-beam device is characterized in having a control value for an aligner coil (29) being determined by: a coil current and an electrode applied-voltage at a control value for objectives (30, 31), which is an electromagnetic-field superposition lens; a control value for image-shift coils (27, 28); and the acceleration voltage of the charged-particle-beam. By doing this, it has become possible to avoid image disturbances that occur on images to be displayed at boundaries between charged areas and non-charged areas, and provide a charged-particle-beam device that obtains clear images without any unevenness in brightness.
摘要:
To provide a charged particle beam device which enables observation and evaluation of the surface and the inside of a sample with low damage to the sample, the charged particle beam device has: a charged particle beam source 2; a sample table 9 in which the sample 210 is placed; a charged particle beam optical system which pulsates a charged particle beam 100 and irradiates the charged particle beam to the sample at an acceleration voltage within a range of 0 kV to 5 kV; a split distance selector 125 for selecting a measurement object of the sample; and a split distance setting unit 124 for setting a split distance in one line scanning of the charged particle beam on the sample.
摘要:
A lower pole piece of an electromagnetic superposition type objective lens is divided into an upper magnetic path and a lower magnetic path. A voltage nearly equal to a retarding voltage is applied to the lower magnetic path. An objective lens capable of acquiring an image with a higher resolution and a higher contrast than a conventional image is provided. An electromagnetic superposition type objective lens includes a magnetic path that encloses a coil, a cylindrical or conical booster magnetic path that surrounds an electron beam, a control magnetic path that is interposed between the coil and sample, an accelerating electric field control unit that accelerates the electron beam using a booster power supply, a decelerating electric field control unit that decelerates the electron beam using a stage power supply, and a suppression unit that suppresses electric discharge of the sample using a control magnetic path power supply.
摘要:
A charged particle beam device is provided that performs proper beam adjustment while suppressing a decrease in MAM time, with a simple configuration without adding a lens, a sensor, or the like. The charged particle beam device includes: an optical element which adjusts a charged particle beam emitted from a charged particle source; an adjustment element which adjusts an incidence condition of the charged particle beam with respect to the optical element; and a control device which controls the adjustment element, wherein the control device determines a difference between a first feature amount indicating a state of the optical element based on the condition setting of the optical element, and a second feature amount indicating a state where the optical element reaches based on the condition setting and executes adjustment by the adjustment element when the difference is greater than or equal to a predetermined value.
摘要:
The objective of the present invention is to provide a height measurement device capable of highly accurate measurement in the depth direction of a structure on a sample. To achieve this objective, proposed are a charged particle beam device and a height measurement device that is provided with a calculation device for determining the size of a structure on a sample on the basis of a detection signal obtained by irradiating the sample with a charged particle beam, wherein the calculation device calculates the distance from a first charged particle beam irradiation mark formed at a first height on the sample and a second charged particle beam irradiation mark formed at a second height on the sample and on the basis of this distance and the charged particle beam irradiation angle when the first charged particle beam irradiation mark and second charged particle beam irradiation mark were formed, calculates the distance between the first height and the second height.
摘要:
A charged particle beam apparatus includes a charged particle beam source which irradiates a sample with a charged particle beam, an electromagnetic lens, a lens control electric source for controlling strength of a convergence effect of the electromagnetic lens; and a phase compensation circuit which is connected to the lens control electric source in parallel with the electromagnetic lens, and controls a lens current at the time of switching the strength of the convergence effect of the electromagnetic lens such that the lens current monotonically increases or monotonically decreases.
摘要:
A gas field ionization ion source (GFIS) is characterized in that the aperture diameter of the extraction electrode can be set to any of at least two different values or the distance from the apex of the emitter to the extraction electrode can be set to any of at least two different values. In addition, solid nitrogen is used for cooling. It may be possible to not only let divergently emitted ions go through the aperture of the extraction electrode but also, in behalf of differential pumping, reduce the diameter of the aperture. In addition, it may be possible to reduce the physical vibration of the cooling means. Consequently, it may be possible to provide a highly stable GFIS and a scanning charged particle microscope equipped with such a GFIS.