摘要:
Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.
摘要:
A photovoltaic module (10) with a plurality of solar cells (20) interconnected in serial and/or parallel arrangement within the module (10) is equipped with an overheat protection system (30) for suppressing damages of the photovoltaic module (10) due to defects of the solar cells (20). The overheat protection system (30) comprises a heat sensor (32) which is thermally coupled to a solar cell (20). The heat sensor (32) is physically integrated into an electrical switch (34, 36, 38) which is electrically connected to said solar cell (20).
摘要:
A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.
摘要:
This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
摘要:
A grid stack structure of a solar cell, which includes a silicon substrate, wherein a front side of the silicon is doped with phosphorus to form a n-emitter and a back side of the silicon is screen printed with aluminum (Al) metallization; a dielectric layer, which acts as an antireflection coating (ARC), applied on the silicon; a mask layer applied on the front side to define a grid opening of the dielectric layer, wherein an etching method is applied to open an unmasked grid area; a light-induced plated nickel or cobalt layer applied to the front side with electrical contact to the back side Al metallization; a silicide layer formed by rapid thermal annealing of the plated nickel (Ni) or cobalt (Co); an optional barrier layer electrodeposited on the silicide; a copper (Cu) layer electrodeposited on the silicide/barrier film layer; and a thin protective layer is chemically applied or electrodeposited on top of the Cu layer.
摘要:
A low cost method is described for forming a textured Si surface such as for a solar cell which includes forming a dielectric layer containing pinholes, anisotropically etching through the pinholes to form inverted pyramids in the Si surface and removing the dielectric layer thereby producing a high light trapping efficiency for incident radiation.
摘要:
A method of reducing the loss of elements of a photovoltaic thin film structure during an annealing process, includes depositing a thin film on a substrate, wherein the thin film includes a single chemical element or a chemical compound, coating the thin film with a protective layer to form a coated thin film structure, wherein the protective layer prevents part of the single chemical element or part of the chemical compound from escaping during an annealing process, and annealing the coated thin film structure to form a coated photovoltaic thin film structure, wherein the coated photovoltaic thin film retains the part of the single chemical element or the part of the chemical compound that is prevented from escaping during the annealing by the protective layer.
摘要:
A method of fabricating solar cell chips. The method includes creating an integrated circuit chip process route for fabricating integrated circuit chips using integrated circuit wafers in an integrated circuit fabrication facility; creating a solar cell process route for fabricating solar cells using solar cell wafers in the integrated circuit fabrication facility; releasing integrated circuit chip wafers and solar cell wafers into tool queues of tools of the an integrated circuit fabrication facility; and processing the solar cell wafers on at least some tools of the integrated circuit fabrication facility used to process the integrated circuit wafers. Also the process used to fabricate the solar cell chips.
摘要:
A lost cost method for fabricating SOI substrates is provided. The method includes forming a stack of p-type doped amorphous Si-containing layers on a semiconductor region of a substrate by utilizing an evaporation deposition process. A solid phase recrystallization step is then performed to convert the amorphous Si-containing layers within the stack into a stack of p-type doped single crystalline Si-containing layers. After recrystallization, the single crystalline Si-containing layers are subjected to anodization and at least an oxidation step to form an SOI substrate. Solar cells and/or other semiconductor devices can be formed on the upper surface of the inventive SOI substrate.
摘要:
A method of fabricating solar cell chips. The method includes creating an integrated circuit chip process route for fabricating integrated circuit chips using integrated circuit wafers in an integrated circuit fabrication facility; creating a solar cell process route for fabricating solar cells using solar cell wafers in the integrated circuit fabrication facility; releasing integrated circuit chip wafers and solar cell wafers into tool queues of tools of the an integrated circuit fabrication facility; and processing the solar cell wafers on at least some tools of the integrated circuit fabrication facility used to process the integrated circuit wafers. Also the process used to fabricate the solar cell chips.