摘要:
A semiconductor substrate is provided, on which there is arranged a first layer, a second layer and a third layer. The third layer is, for example, a resist mask that is used to pattern the second layer. The second layer is, for example, a patterned hard mask used to pattern the first layer. Then, the third layer is removed and a fourth layer is deposited. The fourth layer is, for example, an insulator that fills the trenches which have been formed in the first layer. Then, the fourth layer is planarized by a CMP step. The planarization is continued and the second layer, which is, for example, a hard mask, is removed from the first layer together with the fourth layer. The fourth layer remains in place in a trench which is arranged in the first layer.
摘要:
The invention relates to a method for fabricating a semiconductor memory component, in particular a DRAM or FeRAM having a silicon substrate. The lower electrode of a storage capacitor is insulated from the silicon substrate by a barrier layer. The barrier layer is patterned using a hard mask, in particular, made from SiO2, SiN, SiON, before the storage capacitor is applied, and the mask layer which remains after the patterning is removed so as to uncover the patterned barrier layer. The invention provides for the patterned barrier layer to be embedded in SiO2 by means of CVD (chemical vapor deposition) prior to the removal of the remaining mask layer, and for the remaining mask layer, together with the SiO2 embedding, to be removed from the surface of the barrier layer using an SiO2-CMP (chemical mechanical polishing) process.
摘要:
The invention provides in a preferred embodiment an electronic component comprising a first conductive layer, a non-conductive layer and a second conductive layer. A hole is etched through the non-conductive layer. A nanotube, which is provided in said hole, links the first conductive layer to the second conductive layer in a conductive manner.
摘要:
In order to fabricate a metallization plane with lines and contacts, four dielectric layers are applied to a substrate. Firstly, contact holes are etched through the top two dielectric layers into the underlying dielectric layer, the remaining thickness of the latter layer being essentially equal to the thickness of the top layer. Line trenches are subsequently etched selectively with respect to the first dielectric layer and the third dielectric layer, whose surfaces are uncovered essentially simultaneously. After the first dielectric layer and the third dielectric layer have been patterned, contacts and lines are produced in the contact holes and line trenches.
摘要:
An interconnect arrangement and fabrication method are described. The interconnect arrangement includes an electrically conductive mount substrate, a dielectric layer formed on the mount substrate, and an electrically conductive interconnect formed on the dielectric layer. At least a portion of the dielectric layer under the interconnect contains a cavity. To fabricate the interconnect arrangement, a sacrificial layer is formed on the mount substrate and the interconnect layer is formed on the sacrificial layer. The interconnect layer and the sacrificial layer are structured to produce a structured interconnect on the structured sacrificial layer. A porous dielectric layer is formed on a surface of the mount substrate and of the structured interconnect as well as the sacrificial layer. The sacrificial layer is then removed to form the cavity under the interconnect.
摘要:
In one embodiment, a semiconductor device includes a glass substrate, a semiconductor substrate disposed on the glass substrate, and a magnetic sensor disposed within and/or over the semiconductor substrate.
摘要:
An MIM capacitor includes a first capacitor electrode, which is formed in the surface of a first intermediate dielectric, a second intermediate dielectric, which is formed on the first intermediate dielectric and has an opening that exposes the first capacitor electrode, and a first electrically conducting diffusion barrier layer, which is formed on the surface of the exposed first capacitor electrode. On the diffusion barrier layer and on the side walls of the opening there is also formed a capacitor dielectric and a second capacitor electrode on top.
摘要:
In accordance with an embodiment of the present invention, a method of fabricating a semiconductor device includes forming a trench from a top surface of a substrate having a device region. The device region is adjacent to the top surface than an opposite bottom surface. The trench surrounds the sidewalls of the device region. The trench is filled with an adhesive. An adhesive layer is formed over the top surface of the substrate. A carrier is attached with the adhesive layer. The substrate is thinned from the bottom surface to expose at least a portion of the adhesive and a back surface of the device region. The adhesive layer is removed and adhesive is etched to expose a sidewall of the device region.
摘要:
A method for separating a plurality of dies is provided. The method may include: selectively removing one or more portions from a carrier including a plurality of dies, for separating the plurality of dies along the selectively removed one or more portions, wherein the one or more portions are located between the dies; and subsequently forming over a back side of the dies, at least one metallization layer for packaging the dies
摘要:
In one embodiment, a method of forming a semiconductor device includes forming islands by forming deep trenches within scribe lines of a substrate. The islands have a first notch disposed on sidewalls of the islands. A first electrode stack is formed over a top surface of the islands. The back surface of the substrate is thinned to separate the islands. A second electrode stack is formed over a back surface of the islands.