摘要:
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
摘要:
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
摘要:
A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
摘要:
This invention provides two methods for improving performance of an energy-discrimination detection device with an energy filter of reflective type for a charged particle beam. The first method employs a beam-adjusting means to improve the energy-discrimination power, and the second method uses an electron-multiplication means to enhance the image signal without noise raise. A LVSEM with such an improved energy-discrimination detection device can provide variant high-contrast images of interested features on a specimen surface for multiple application purposes.
摘要:
A multi-axis magnetic lens with stable performance in focusing a plurality of charged particle beams is provided. The multi-axis magnetic lens comprises a plurality of magnetic dub-lens modules. On the one hand, the multi-axis magnetic lens employs an annular permanent-magnet unit to provide a basic and stable magnetic flux to the plurality of magnetic sub-lens modules. One the other hand, the multi-axis magnetic lens uses a plurality of subsidiary coils to provide additional and adjustable magnetic flux to the plurality of magnetic sub-lens modules respectively. The invention also proposes a method to turn off or adjust the basic and stable magnetic flux for some applications. Hence, this invention will benefit the applications which need to execute in a long time period while keeping a high stabilization in performance.
摘要:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
摘要:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
摘要:
The present invention provides a charged particle beam apparatus which employs LVSEM to inspect sample surface with a throughput much higher than the prior art. The high throughput is realized by providing a probe current and a FOV both several times of those of the prior art. Accordingly several means are proposed to avoid obvious degradation of image resolution due to the increases in Coulomb effect and geometric aberrations, and increase efficiency and uniformity of secondary charged particle collection.
摘要:
A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
摘要:
A new multi-beam apparatus with a total FOV variable in size, orientation and incident angle, is proposed. The new apparatus provides more flexibility to speed the sample observation and enable more samples observable. More specifically, as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry, the new apparatus provide more possibilities to achieve a high throughput and detect more kinds of defects.