摘要:
A totally enclosed motor which includes a rotor disposed inside a housing and a heat of the rotor is transferred to the housing, a stator disposed inside the housing and a heat of the stator is transferred to the housing, and an inner fin which is disposed in the rotor and agitates air inside the housing. The totally enclosed motor is cooled by a forced convection by an outer fan disposed outside the housing, or by a natural convention in the vicinity of an outer surface of the housing, and a shape of the rotor is different between one end side and the other end side of the rotor in an extending direction of a rotary shaft of the rotor.
摘要:
A totally enclosed motor which includes a rotor disposed inside a housing and a heat of the rotor is transferred to the housing, a stator disposed inside the housing and a heat of the stator is transferred to the housing, and an inner fin which is disposed in the rotor and agitates air inside the housing. The totally enclosed motor is cooled by a forced convection by an outer fan disposed outside the housing, or by a natural convention in the vicinity of an outer surface of the housing, and a shape of the rotor is different between one end side and the other end side of the rotor in an extending direction of a rotary shaft of the rotor.
摘要:
The present invention is a power distribution mounting component operable at high voltages. More specifically, the power distribution mounting component includes: an insulating layer; current-carrying first conductor layers sandwiching the insulating layer; and a second conductor layer (thinner than the first conductor layers) interposed between the insulating layer and at least one of the first conductor layers. Each the second conductor layer between the insulating layer and the overlying current-carrying first conductor layer is sufficiently thinner than the first conductor layer and is therefore formed in close adhesion to the insulating layer, thereby increasing the partial discharge inception voltage of the power distribution mounting component and therefore its insulation reliability.
摘要:
An object of the invention is to provide an insulation circuit board with high insulation reliability and a related technology that uses this insulation circuit board. An insulation circuit board (12) according to the invention includes: a metal base plate (1); an insulation layer (2); and a conductive circuit (4) formed on the metal base plate (1), with the insulation layer (2) therebetween, wherein the insulation layer (2) is formed by lamination of a plurality of layers that includes at least: a composite insulation layer (2a) that forms a surface boundary with the conductive circuit (4) and includes an inorganic filler (8) dispersed in an insulation plastic (7); and a simple plastic insulation layer (2b) that includes no inorganic filler (8).
摘要:
The present invention is a power distribution mounting component operable at high voltages. More specifically, the power distribution mounting component includes: an insulating layer; current-carrying first conductor layers sandwiching the insulating layer; and a second conductor layer (thinner than the first conductor layers) interposed between the insulating layer and at least one of the first conductor layers. Each the second conductor layer between the insulating layer and the overlying current-carrying first conductor layer is sufficiently thinner than the first conductor layer and is therefore formed in close adhesion to the insulating layer, thereby increasing the partial discharge inception voltage of the power distribution mounting component and therefore its insulation reliability.
摘要:
Provided is a power conversion device including an insulating member manufactured such that a thickness di (mm) of the insulating member made from a resin, provided between a heat dissipating surface of a conductor plate bonded to a power semiconductor device and a heat dissipating plate that dissipates the heat of the power semiconductor device satisfies a relation of di>(1.36×10-8×Vt2+3.4×10-5×Vt−0.015)×∈r, where a relative permittivity of the insulating member is ∈r and a surge voltage generated between the conductor plate and the heat dissipating plate accompanied by an ON/OFF switching operation of the power semiconductor device is Vt (V). The conductor plate of the power semiconductor device, the insulating member, and the heat dissipating plate are bonded by thermocompression bonding.
摘要:
Heat radiation surfaces 7b and 8b of electrode lead frames 7 and 8 make thermal contact with heat radiation members 301 via insulation sheets 10 to dissipate heat from a power semiconductor element 5 to the heat radiation members (thick portions 301). Each of exposed areas of the heat radiation surfaces 7b and 8b and a surface 13b of a mold material (sealing material 13) adjacent to the exposed area produce an uneven step from which either one of the exposed area and the surface 13b adjacent to the exposed area projects. The step side surface formed between the convex surface and the concave surface of the uneven step has an inclined surface 7a or 13a so configured that an obtuse angle can be formed by the inclined surface and the convex surface and by the inclined surface and the concave surface for each.
摘要:
Provided is a power conversion device including an insulating member manufactured such that a thickness di (mm) of the insulating member made from a resin, provided between a heat dissipating surface of a conductor plate bonded to a power semiconductor device and a heat dissipating plate that dissipates the heat of the power semiconductor device satisfies a relation of di>(1.36×10-8×Vt2+3.4×10-5×Vt−0.015)×εr, where a relative permittivity of the insulating member is Er and a surge voltage generated between the conductor plate and the heat dissipating plate accompanied by an ON/OFF switching operation of the power semiconductor device is Vt (V). The conductor plate of the power semiconductor device, the insulating member, and the heat dissipating plate are bonded by thermocompression bonding.
摘要:
Heat radiation surfaces 7b and 8b of electrode lead frames 7 and 8 make thermal contact with heat radiation members 301 via insulation sheets 10 to dissipate heat from a power semiconductor element 5 to the heat radiation members (thick portions 301). Each of exposed areas of the heat radiation surfaces 7b and 8b and a surface 13b of a mold material (sealing material 13) adjacent to the exposed area produce an uneven step from which either one of the exposed area and the surface 13b adjacent to the exposed area projects. The step side surface formed between the convex surface and the concave surface of the uneven step has an inclined surface 7a or 13a so configured that an obtuse angle can be formed by the inclined surface and the convex surface and by the inclined surface and the concave surface for each.
摘要:
A power module includes a sealed body in which a semiconductor chip-mounted conductor plate is sealed by a resin in such a manner that a heat dissipating surface of the conductor plate is exposed, a heat dissipating member that is arranged to face the heat dissipating surface, and an insulation layer that is arranged between the sealed body and the heat dissipating member. The insulation layer has a laminated body that is made by laminating an impregnation resin-impregnated ceramic thermal spray film and a bonding resin layer in which a filler having good thermal conductivity is mixed, and that is provided to be in contact with the heat dissipating member and at least the entirety of the heat dissipating surface, and a stress relief resin portion that is provided in a gap between the heat dissipating member and the sealed body to cover an entire circumferential end portion of the laminated body.