Abstract:
A power semiconductor device includes a first region in an active region of a semiconductor body and including first trenches each having a first trench electrode electrically connected to a gate terminal and a first trench insulator. A second region includes second trenches each having a second trench electrode electrically connected to the gate terminal and a second trench insulator. At least one of the following applies: a minimal thickness of each second trench insulator amounts to at least 120% of a corresponding minimal thickness of each first trench insulator; an average thickness of the second trench insulators amounts to at least 120% of an average thickness of the first trench insulators; a trench bottom thickness of each second trench insulator amounts to at least 120% of a corresponding trench bottom thickness of each first trench insulator; a minimal breakdown voltage of each second trench insulator amounts to at least 120% of a minimal breakdown voltage of each first trench insulator.
Abstract:
A semiconductor device is presented. The semiconductor device comprises a semiconductor body coupled to a first load terminal and to a second load terminal and configured to carry a load current between the first load terminal and the second load terminal. The first load terminal comprises a contiguous metal layer coupled to the semiconductor body; and at least one metal island arranged on top of and in contact with the contiguous metal layer and configured to be contacted by an end of a bond wire and to receive at least a part of the load current by means of the bond wire, wherein the contiguous metal layer and the metal island are composed of the same metal.
Abstract:
A method of producing a semiconductor device includes providing a semiconductor body having a front side 10-1 and a back side, wherein the semiconductor body includes a drift region having dopants of a first conductivity type and a body region having dopants of a second conductivity type complementary to the first conductivity type, a transition between the drift region and the body region forming a pn-junction. The method further comprises: creating a contact groove in the semiconductor body, the contact groove extending into the body region along a vertical direction pointing from the front side to the back side; and filling the contact groove at least partially by epitaxially growing a semiconductor material within the contact groove, wherein the semiconductor material has dopants of the second conductivity type.
Abstract:
Embodiments relate to a semiconductor device, a semiconductor wafer structure, and a method for manufacturing or forming a semiconductor wafer structure. The semiconductor device includes a semiconductor substrate with a first region having a first conductivity type and a second region having a second conductivity type. The semiconductor device further includes an oxide structure with interrupted areas and a metal layer structure being in contact with the second region at least at the interrupted areas of the oxide.
Abstract:
A semiconductor device includes a first transistor cell including a first gate electrode in a first trench. The semiconductor device further includes a second transistor cell including a second gate electrode in a second trench, wherein the first and second gate electrodes are electrically connected. The semiconductor device further includes a third trench between the first and second trenches, wherein the third trench extends deeper into a semiconductor body from a first side of the semiconductor body than the first and second trenches. The semiconductor device further includes a dielectric in the third trench covering a bottom side and walls of the third trench.
Abstract:
A semiconductor device is presented. The semiconductor device comprises a semiconductor body coupled to a first load terminal and to a second load terminal and configured to carry a load current between the first load terminal and the second load terminal. The first load terminal comprises a contiguous metal layer coupled to the semiconductor body; and at least one metal island arranged on top of and in contact with the contiguous metal layer and configured to be contacted by an end of a bond wire and to receive at least a part of the load current by means of the bond wire, wherein the contiguous metal layer and the metal island are composed of the same metal.
Abstract:
Embodiments relate to a semiconductor device, a semiconductor wafer structure, and a method for manufacturing or forming a semiconductor wafer structure. The semiconductor device includes a semiconductor substrate with a first region having a first conductivity type and a second region having a second conductivity type. The semiconductor device further includes an oxide structure with interrupted areas and a metal layer structure being in contact with the second region at least at the interrupted areas of the oxide.
Abstract:
A semiconductor device and a method for producing thereof is provided. The semiconductor device includes a plurality of device cells, each comprising a body region, a source region, and a gate electrode adjacent to the body region and dielectrically insulated from the body region by a gate dielectric; and an electrically conductive gate layer comprising the gate electrodes or electrically connected to the gate electrodes of the plurality of device cells. The gate layer is electrically connected to a gate conductor and includes at least one of an increased resistance region and a decreased resistance region.
Abstract:
A method of producing a semiconductor device includes providing a semiconductor body having a front side 10-1 and a back side, wherein the semiconductor body includes a drift region having dopants of a first conductivity type and a body region having dopants of a second conductivity type complementary to the first conductivity type, a transition between the drift region and the body region forming a pn-junction. The method further comprises: creating a contact groove in the semiconductor body, the contact groove extending into the body region along a vertical direction pointing from the front side to the back side; and filling the contact groove at least partially by epitaxially growing a semiconductor material within the contact groove, wherein the semiconductor material has dopants of the second conductivity type.
Abstract:
A semiconductor device includes a first transistor cell including a first gate electrode in a first trench. The semiconductor device further includes a second transistor cell including a second gate electrode in a second trench, wherein the first and second gate electrodes are electrically connected. The semiconductor device further includes a third trench between the first and second trenches, wherein the third trench extends deeper into a semiconductor body from a first side of the semiconductor body than the first and second trenches. The semiconductor device further includes a dielectric in the third trench covering a bottom side and walls of the third trench.