Abstract:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor layer inserted between the dielectric layer and at least one of the two electrode layers. In some embodiments, the dielectric layer may be doped with an oxygen donor dopant. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.
Abstract:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor dopant incorporated within the dielectric layer. The oxygen donor dopants may be incorporated within the dielectric layer during the formation of the dielectric layer. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.
Abstract:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor dopant incorporated within the dielectric layer. The oxygen donor dopants may be incorporated within the dielectric layer during the formation of the dielectric layer. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.
Abstract:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor layer inserted between the dielectric layer and at least one of the two electrode layers. In some embodiments, the dielectric layer may be doped with an oxygen donor dopant. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.
Abstract:
A dielectric layer can achieve a crystallography orientation similar to a base dielectric layer with a conductive layer disposed between the two dielectric layers. By providing a conductive layer having similar crystal structure and lattice parameters with the base dielectric layer, the crystallography orientation can be carried from the base dielectric layer, across the conductive layer to affect the dielectric layer. The process can be used to form capacitor structure for anisotropic dielectric materials, along the direction of high dielectric constant.
Abstract:
Embodiments provided herein describe methods for forming cadmium-manganese-telluride (CMT), such as for use in photovoltaic devices. A substrate including a material with a zinc blende crystalline structure is provided. CMT is formed above the substrate. During the formation of the CMT, cation-rich processing conditions are maintained. The resulting CMT may be more readily provided with p-type dopants when compared to conventionally-formed CMT.
Abstract:
An internal electrical field in a resistive memory element can be formed to reduce the forming voltage. The internal electric field can be formed by incorporating one or more charged layers within the switching dielectric layer of the resistive memory element. The charged layers can include adjacent charge layers to form dipole layers. The charged layers can be formed at or near the interface of the switching dielectric layer with an electrode layer. Further, the charged layer can be oriented with lower valence substitution side towards lower work function electrode, and higher valence substitution side towards higher work function electrode.
Abstract:
CMOS imaging sensors having fluorine-passivated structures to reduce dark current are disclosed together with methods of making thereof. The CIS comprises an array of pixels on a substrate, each pixel comprising a pinned photodiode, an isolation trench adjacent to the pinned photodiode, and a plurality of transistors. Methods of preparing a CIS comprise providing a source of fluorine (F) atoms, and annealing in the presence of the source of F atoms. After the annealing, at least one silicon-containing surface or region in the CIS comprises Si—F bonds and is fluorine passivated.
Abstract:
Steering elements suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. In some embodiments, the steering element can include a first electrode, a second electrode, and a graded dielectric layer sandwiched between the two electrodes. The graded dielectric layer can include a varied composition from the first electrode to the second electrode. Graded energy level at the top and/or at the bottom of the band gap, which can be a result of the graded dielectric layer composition, and/or the work function of the electrodes can be configured to suppress tunneling and thermionic current in an off-state of the steering element and/or to maximize a ratio of the tunneling and thermionic currents in an on-state and in an off-state of the steering element.
Abstract:
Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2.