摘要:
A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×10−3, and wherein a plane orientation of the main surface has an inclination angle equal to or greater than −10° and equal to or smaller than 10° in a [0001] direction with respect to a plane including a c axis of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×10−3, and wherein a plane orientation of the main surface has an inclination angle equal to or greater than −10° and equal to or smaller than 10° in a [0001] direction with respect to a plane including a c axis of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A group III nitride crystal substrate is provided in which a uniform distortion at a surface layer of the crystal substrate represented by a value of |d1 −d2 |/d2 obtained from a plane spacing d1 at the X-ray penetration depth of 0.3 μm and a plane spacing d2 at the X-ray penetration depth of 5 μm is equal to or lower than 1.9 ×10−3, and the main surface has a plane orientation inclined in the direction at an angle equal to or greater than 10° and equal to or smaller than 80° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A group III nitride crystal substrate is provided wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.9×10−3, and wherein the main surface has a plane orientation inclined in a direction at an angle equal to or greater than 10° and equal to or smaller than 81° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A gallium nitride-based semiconductor optical device is provided that includes an indium-containing gallium nitride-based semiconductor layer that exhibit low piezoelectric effect and high crystal quality. The gallium nitride-based semiconductor optical device 11a includes a GaN support base 13, a GaN-based semiconductor region 15, and well layers 19. A primary surface 13a tilts from a surface orthogonal to a reference axis that extends in a direction from one crystal axis of the m-axis and the a-axis of GaN toward the other crystal axis. The tilt angle AOFF is 0.05 degree or more to less than 15 degrees. The angle AOFF is equal to the angle defined by a vector VM and a vector VN. The inclination of the primary surface is shown by a typical m-plane SM and m-axis vector VM. The GaN-based semiconductor region 15 is provided on the primary surface 13a. In the well layers 19 in an active layer 17, both the m-plane and the a-plane of the well layers 19 tilt from a normal axis AN of the primary surface 13a. The indium content of the well layers 19 is 0.1 or more.
摘要:
A group III nitride crystal substrate is provided in which, in connection with plane spacing of arbitrary specific parallel crystal lattice planes of the group III nitride crystal substrate obtained from X-ray diffraction measurement performed with variation of X-ray penetration depth from a main surface of the crystal substrate while X-ray diffraction conditions of the specific parallel crystal lattice planes of the crystal substrate are satisfied, a uniform distortion at a surface layer of the crystal substrate represented by a value of |d1−d2|/d2 obtained from a plane spacing d1 at the X-ray penetration depth of 0.3 μm and a plane spacing d2 at the X-ray penetration depth of 5 μm is equal to or lower than 1.9×10−3, and the main surface has a plane orientation inclined in the direction at an angle equal to or greater than 10° and equal to or smaller than 80° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A group III nitride semiconductor optical device 11a has a group III nitride semiconductor substrate 13 having a main surface 13a forming a finite angle with a reference plane Sc orthogonal to a reference axis Cx extending in a c-axis direction of the group III nitride semiconductor and an active layer 17 of a quantum-well structure, disposed on the main surface 13a of the group III nitride semiconductor substrate 13, including a well layer 28 made of a group III nitride semiconductor and a plurality of barrier layers 29 made of a group III nitride semiconductor. The main surface 13a exhibits semipolarity. The active layer 17 has an oxygen content of at least 1×1017 cm−3 but not exceeding 8×1017 cm−3. The plurality of barrier layers 29 contain an n-type impurity other than oxygen by at least 1×1017 cm−3 but not exceeding 1×1019 cm−3 in an upper near-interface area 29u in contact with a lower interface 28Sd of the well layer 28 on the group III nitride semiconductor substrate side.
摘要:
Provided is a Group III nitride semiconductor device, which comprises an electrically conductive substrate including a primary surface comprised of a first gallium nitride based semiconductor, and a Group III nitride semiconductor region including a first p-type gallium nitride based semiconductor layer and provided on the primary surface. The primary surface of the substrate is inclined at an angle in the range of not less than 50 degrees, and less than 130 degrees from a plane perpendicular to a reference axis extending along the c-axis of the first gallium nitride based semiconductor, an oxygen concentration Noxg of the first p-type gallium nitride based semiconductor layer is not more than 5×1017 cm−3, and a ratio (Noxg/Npd) of the oxygen concentration Noxg to a p-type dopant concentration Npd of the first p-type gallium nitride based semiconductor layer is not more than 1/10.
摘要:
A nitride semiconductor device includes a main surface and an indicator portion. The main surface is a plane inclined by at least 71° and at most 79° in a [1-100] direction from a (0001) plane or a plane inclined by at least 71° and at most 79° in a [−1100] direction from a (000-1) plane. The indicator portion indicates a (−1017) plane, a (10-1-7) plane, or a plane inclined by at least −4° and at most 4° in the [1-100] direction from these planes and inclined by at least −0.5° and at most 0.5° in a direction orthogonal to the [1-100] direction.
摘要:
A method of fabricating a III-nitride semiconductor laser device includes: preparing a substrate product, where the substrate product has a laser structure, the laser structure includes a semiconductor region and a substrate of a hexagonal III-nitride semiconductor, the substrate has a semipolar primary surface, and the semiconductor region is formed on the semipolar primary surface; scribing a first surface of the substrate product to form a scribed mark, the scribed mark extending in a direction of an a-axis of the hexagonal III-nitride semiconductor; and after forming the scribed mark, carrying out breakup of the substrate product by press against a second region of the substrate product while supporting a first region of the substrate product but not supporting the second region thereof, to form another substrate product and a laser bar.