摘要:
A method and apparatus are disclosed for identifying molecular structures within a sample substance using a monolithic array of test sites formed on a substrate upon which the sample substance is applied. Each test site includes probes formed therein to bond with a predetermined target molecular structure or structures. A signal is applied to the test sites and certain electrical, mechanical and/or optical properties of the test sites are detected to determine which probes have bonded to an associated target molecular structure.
摘要:
A method and apparatus are disclosed for identifying molecular structures within a sample substance using a monolithic array of test sites formed on a substrate upon which the sample substance is applied. Each test site includes probes formed therein to bond with a predetermined target molecular structure or structures. A signal is applied to the test sites and certain electrical, mechanical and/or optical properties of the test sites are detected to determine which probes have bonded to an associated target molecular structure.
摘要:
A charge-coupled device imager including an array of super pixels disposed in a semiconductor substrate having a surface that is accessible to incident illumination. For each super pixel there is provided a plurality of subpixels which each correspond to one in the sequence of image frames. Each subpixel includes a doped photogenerated charge collection channel region opposite the illumination-accessible substrate surface, a charge collection channel region control electrode, doped charge drain regions adjacent to the channel region, a charge drain region control electrode, and a doped charge collection control region. To each subpixel are provided channel region and drain region control voltage connections, for independent collection and storage of photogenerated charge from the substrate at the charge collection channel region of a selected subpixel during one in the sequence of image frames and for drainage of photogenerated charge from the substrate to a drain region.
摘要:
A surface electron barrier region is formed on a semiconductor membrane device by a single step laser process which produces a sharp doping profile in a surface region above the light penetration depth. Enhanced quantum efficiency is observed, and by selectively forming barrier layers of differing depth, a CCD device architecture for two-color sensitivity is achieved. The barrier layer results in enhanced membrane-type and radiation hardened bipolar and CMOS devices.
摘要:
An imaging system is provided for imaging a scene to produce a sequence of image frames of the scene at a frame rate, R, of at least about 25 image frames per second. The system includes an optical input port, a charge-coupled imaging device, an analog signal processor, and an analog-to-digital processor (A/D). The A/D digitizes the amplified pixel signal to produce a digital image signal formatted as a sequence of image frames each of a plurality of digital pixel values and having a dynamic range of digital pixel values represented by a number of digital bits, B, where B is greater than 8. A digital image processor is provided for processing digital pixel values in the sequence of image frames to produce an output image frame sequence at the frame rate, R, representative of the imaged scene, with a latency of no more than about 1/R and a dynamic range of image frame pixel values represented by a number of digital bits, D, where D is less than B. The output image frame sequence is characterized by noise-limited resolution of at least a minimum number, N.sub.M, of line pairs per millimeter, referred to the charge-coupled imaging device pixel array, in an imaged scene as a function of illuminance of the input light impinging the charge-coupled imaging device pixels.
摘要:
A hybrid integrated circuit and method of fabricating a hybrid integrated circuit. A first wafer is provided having a first surface with a first electrical contact for a first active circuit associated therewith and a second surface. A second wafer is provided having a third surface with a second electrical contact for a second active circuit associated therewith and a fourth surface, the second wafer being chemically thinned at the fourth surface. The first and second wafers are bonded together at an interface between the first and third surfaces such that the first and second electrical contacts are relatively aligned with one another. The fourth surface of the second wafer is processed to define an access via to both the first and second contacts. An electrical interconnection is formed between the first and second contacts within the access via so that the first and second active circuits are electrically interconnected.
摘要:
Provided is a method of fabrication of a blooming control structure for an imager. The structure is produced in a semiconductor substrate in which is configured an electrical charge collection region. The electrical charge collection region is configured to accumulate electrical charge that is photogenerated in the substrate, up to a characteristic charge collection capacity. A blooming drain region is configured in the substrate laterally spaced from the charge collection region. The blooming drain region includes an extended path of a conductivity type and level that are selected for conducting charge in excess of the characteristic charge collection capacity away from the charge collection region. A blooming barrier region is configured in the substrate to be adjacent to and laterally spacing the charge collection and blooming drain regions by a blooming barrier width. This barrier width corresponds to an acute blooming barrier impurity implantation angle with the substrate. The blooming barrier region is of a conductivity type and level that is selected based on the blooming barrier width to produce a corresponding electrical potential barrier between the charge collection and blooming drain regions. The blooming barrier regions of the structure are very precisely defined by the selected acute blooming barrier impurity implantation angle, and optionally in addition by a rotation of the blooming barrier impurity implantation, as well as a non-vertical sidewall profile of the an impurity implantation masking layer.
摘要:
An electronic image sensor includes a semiconductor substrate having a first surface configured for accepting illumination to a pixel array disposed in the substrate. An electrically-doped channel region for each pixel is disposed at a second substrate surface opposite the first substrate surface. The channel regions are for collecting photogenerated charge in the substrate. An electrically-doped channel stop region is at the second substrate surface between each channel region. An electrically-doped shutter buried layer, disposed in the substrate at a depth from the second substrate surface that is greater than that of the pixel channel regions, extends across the pixel array. An electrically-doped photogenerated-charge-extinguishment layer, at the first substrate surface, extends across the pixel array. A substrate bulk region between the shutter buried layer and the photogenerated-charge-extinguishment layer is characterized by an electrical resistivity enabling independent electrical bias of the photogenerated-charge-extinguishment layer from electrically-doped regions of the substrate.
摘要:
A multidirectional charge transfer device configured in a charge storage medium. The device includes an array of charge storage regions. Each of said charge storage regions includes a plurality of first gates, each of which is arranged in a first portion of each charge storage region, a plurality of second gates, each of which is arranged in a second portion of each charge storage region, a plurality of third gates, each of which is arranged in a third portion of each charge storage region, and a plurality of fourth gates, each of which is arranged in a fourth portion of each charge storage region. The plurality of gates and charge storage regions are configured to define at least three bidirectional charge transfer paths which are noncollinear with respect to each other. The plurality of gates are sequentially biased to establish charge transfer along one of said bidirectional charge transfer paths and forming blocking potentials to charge transfer in the remaining charge transfer paths.
摘要:
In accordance with the invention, an electrically conducting charge transfer channel is formed in a semiconductor substrate and an electrically insulating layer is formed on a surface of the substrate; a layer of gate electrode material is formed on the insulating layer. On the gate material layer is formed a first patterned masking layer having apertures that expose regions of the underlying gate material layer that are to form gate electrodes, and the first-pattern-exposed regions of the gate material layer are electrically doped. In addition, on the gate material layer is formed a second patterned masking layer having apertures that expose regions of the underlying gate material layer that are to form gaps between gate electrodes, and the second-pattern-exposed regions of the gate material layer are etched.