Semiconductor laser and method of fabricating same
    5.
    发明授权
    Semiconductor laser and method of fabricating same 有权
    半导体激光器及其制造方法

    公开(公告)号:US06400742B1

    公开(公告)日:2002-06-04

    申请号:US09498372

    申请日:2000-02-04

    IPC分类号: H01S500

    摘要: A semiconductor laser is disclosed, which realizes a continuous oscillation in a fundamental transverse mode at a low operating voltage by a transverse mode control. This semiconductor laser is fabricated by forming successively the following layers on a sapphire substrate 10 in the order an n-type GaN contact layer, an n-type GaAlN cladding layer 13, an MQW active layer 16, a p-type GaAlN cladding layer 19, wherein the laser comprises a double heterostructure including a ridge in the shape of a stripe formed in the cladding layer 19 and a light confining layer 20 formed in a region except the ridge portion of the cladding layer 19 on the double heterostructure, wherein a refractive index of the light confining layer 20 is larger than that of a p-type GaAlN cladding layer.

    摘要翻译: 公开了一种半导体激光器,其通过横向模式控制在低工作电压下实现基本横向模式的连续振荡。 该半导体激光器是按照n型GaN接触层,n型GaAlN包覆层13,MQW有源层16,p型GaAlN覆盖层19的顺序依次形成蓝宝石衬底10上的以下层来制造的 其中激光器包括双重异质结构,其包括形成在包覆层19中的条纹形状的脊和形成在双重异质结构上的包层19的脊部之外的区域中的光限制层20,其中折射率 光限制层20的折射率大于p型GaAlN包覆层的折射率。

    Semiconductor light emitting device including a non-stoichiometric
compound layer and manufacturing method thereof
    6.
    发明授权
    Semiconductor light emitting device including a non-stoichiometric compound layer and manufacturing method thereof 失效
    包括非化学计量的化合物层的半导体发光器件及其制造方法

    公开(公告)号:US6057565A

    公开(公告)日:2000-05-02

    申请号:US937166

    申请日:1997-09-25

    IPC分类号: H01L33/14 H01L33/32 H01L33/00

    摘要: In the semiconductor light emitting device, a high resistance layer formed by mutual diffusion at an interface with the substrate crystal can be eliminated, and a low resistance p-type contact can be realized. In addition, it is possible to reduce the leak current when an internal current-blocking structure is formed. In practice, a compound semiconductor layer offset in composition ratio stoichiometrically is used as the contact layer. Further, when a predetermined element is added to the contact layer, a large amount of doping can be enabled in comparison with when impurities are added to the ordinary GaN based layer. Therefore, a high concentration conductive type layer can be realized while reducing the contact resistance. In addition, when the compound semiconductor layer offset away from the stoichiometric composition is used as the current-blocking layer, the current-blocking efficiency can be improved. Further, when the substrate is irradiated with light having energy slightly higher than that of the band gap of the grown crystal in the photo-excitation MOCVD method in order to eliminate the rough surface, it is possible to realize the p-type conductive of high carrier concentration.

    摘要翻译: 在半导体发光器件中,可以消除在与衬底晶体的界面处相互扩散形成的高电阻层,并且可以实现低电阻p型接触。 此外,当形成内部阻流结构时,可以减小泄漏电流。 实际上,化学计量组成比偏移的化合物半导体层用作接触层。 此外,当向接触层添加预定元素时,与将杂质添加到普通的GaN基层相比,可以实现大量的掺杂。 因此,可以在降低接触电阻的同时实现高浓度导电型层。 另外,当偏离化学计量组成的化合物半导体层用作电流阻挡层时,可以提高电流阻挡效率。 此外,为了消除粗糙表面,为了消除粗糙表面,当在光激发MOCVD方法中照射具有比生长晶体的带隙稍高的光的基板时,可以实现高的p型导电 载体浓度。