摘要:
A semiconductor laser is formed from a gallium nitride-based compound semiconductor material, and has a double-heterostructure portion obtained by sandwiching an active layer between an n-type cladding layer and a p-type cladding layer on a sapphire substrate. The double-heterostructure portion is formed into a mesa shape on the sapphire substrate via a GaN buffer layer. The two sides of this mesa structure are buried with GaN current blocking layers.
摘要:
A gallium nitride-based compound semiconductor laser has a double-heterojunction structure, in which an active layer is sandwiched between cladding layers, on a sapphire substrate. A GaN current blocking layer having a striped opening portion is formed on the p-cladding layer. A p-GaN buried layer and a contact layer through which a current is injected into the opening portion of the current blocking layer and which are larger in area than the opening portion are formed. The active layer has a multiple quantum well structure constituted by a cyclic structure formed by cyclically stacking two types of InGaAlN layers which have different band gaps and are 10 nm or more thick.
摘要:
A gallium nitride-based compound semiconductor laser has a double-heterojunction structure, in which an active layer is sandwiched between cladding layers, on a sapphire substrate. A GaN current blocking layer having a striped opening portion is formed on the p-cladding layer. A p-GaN buried layer and a contact layer through which a current is injected into the opening portion of the current blocking layer and which are larger in area than the opening portion are formed. The active layer has a multiple quantum well structure constituted by a cyclic structure formed by cyclically stacking two types of InGaAlN layers which have different band gaps and are 10 nm or less thick.
摘要:
A gallium nitride-based compound semiconductor laser has a double-heterojunction structure, in which an active layer is sandwiched between cladding layers, on a sapphire substrate. A GaN current blocking layer having a striped opening portion is formed on the p-cladding layer. A p-GaN buried layer and a contact layer through which a current is injected into the opening portion of the current blocking layer and which are larger in area than the opening portion are formed. The active layer has a multiple quantum well structure constituted by a cyclic structure formed by cyclically stacking two types of InGaAlN layers which have different band gaps and are 10 nm or more thick.
摘要:
A semiconductor laser is formed of gallium nitride series compound semiconductor and has a double hetero structure including an MQW (multiple quantum well) active layer held between p-type and n-type AlGaN clad layers. The double hetero structure is held between p-type and n-type contact layers. An InGaN optical absorption layer having an optical absorption coefficient larger than the clad layer which has the same conductivity type as the contact layer and is formed adjacent to the contact layer is formed in at least one of the contact layers and an InAlGaN optical guided mode control layer (layer of small refractive index) having an refractive index smaller than the clad layer is formed on the exterior of the optical absorption layer.
摘要:
A semiconductor light-emitting device comprises a semiconductor light-emitting device section of a hexagonal type; and an electrically conductive semiconductor substrate of a cubic type combined into the semiconductor light-emitting device, and having an orientation of its cleavage facet conformed to an orientation of the cleavage facet of one of semiconductor layers forming the semiconductor light-emitting device section. The substrate of the cubic type is cleaved so that the semiconductor light-emitting device section of the hexagonal type is induced to be cleaved, and that a mirror surface can be easily formed.
摘要:
In order to remove the problems in conventional nitride compound semiconductor laser structures, namely, high operation voltage caused by a high resistance in a p-type layer and a high contact resistance of an electrode, damage to the crystal caused by dry etching, insufficient current injection, and the need for a high current density, a nitride compound semiconductor light emitting device has current blocking layers made of n-type B(1−x−y−z)InxAlyGazN (0≦x≦1, 0≦y≦1, 0≦z≦1) single crystal containing an oxide of a predetermined metal, carbon and impurities exhibiting p-type and n-type conductivity, or i-type B(1−x−y−z)InxAlyGazN (0≦x≦1, 0≦y≦1, 0≦z≦1) single crystal in which carriers are inactivated by hydrogen or oxygen to realize an internal current blocking structure without the need for dry etching. By applying a reverse bias voltage, the semiconductor can be activated only along a current path, and the remainder region is utilized as a current blocking layer. When the n-side electrode has a unique three-layered structure, a reduction in contact resistance and good wire bonding are promised.
摘要翻译:为了消除常规氮化物化合物半导体激光器结构中的问题,即由p型层中的高电阻引起的高操作电压和电极的高接触电阻,由干蚀刻引起的晶体损坏,电流不足 注入,并且需要高电流密度,氮化物化合物半导体发光器件具有由n型B(1-xyz)In x AlyGazN(0≤x≤1,0<= y <= 1)形成的电流阻挡层 ,0 <= z <= 1)含有预定金属的氧化物的单晶,碳和表现出p型和n型导电性的杂质,或i型B(1-xyz)In x AlyGazN(0 <= x < 1,0 <= y <= 1,0 <= z <= 1)其中载体被氢或氧灭活以实现内部电流阻挡结构而不需要干法蚀刻的单晶。 通过施加反向偏置电压,半导体只能沿着电流路径被激活,并且剩余区域被用作电流阻挡层。 当n侧电极具有独特的三层结构时,承诺了接触电阻的降低和良好的引线接合。
摘要:
A light-emitting device is provided, which includes a substrate having a plane surface, a semiconductor light-emitting element mounted on the plane surface of the substrate and which emits light in a range from ultraviolet ray to visible light, a first light transmissible layer formed above the substrate and covering the semiconductor light-emitting element, a phosphor layer formed above the first light transmissible layer and containing phosphor particles and matrix, and a second light transmissible layer formed above the phosphor layer and contacting with the plane surface of the substrate. The surface of the phosphor layer has projections reflecting shapes of the phosphor particles.
摘要:
A light-emitting device is provided, which includes a substrate having a plane surface, a semiconductor light-emitting element mounted on the plane surface of the substrate and which emits light in a range from ultraviolet ray to visible light, a first light transmissible layer formed above the substrate and covering the semiconductor light-emitting element, a phosphor layer formed above the first light transmissible layer and containing phosphor particles and matrix, and a second light transmissible layer formed above the phosphor layer and contacting with the plane surface of the substrate. The surface of the phosphor layer has projections reflecting shapes of the phosphor particles.
摘要:
A semiconductor light emitting element includes a semiconductor light emitting element emitting light beams in ultraviolet ranges and visible ranges, and a fluorescent element absorbing the light beams from the semiconductor light emitting element and outputting visible light beams in a light taking-out direction different from a light emitting direction. The light beams emitted from the light emitting element are absorbed within the semiconductor light emitting device.