摘要:
A circuit for driving a plurality of capacitive actuators, the circuit having a low-voltage side, a high voltage side and a flyback transformer between the two. The low-voltage side comprises first and second pairs of low-side switches connected in series across an input voltage. The flyback transformer has a primary winding connected to the two pairs of switches. The high-voltage side has a pair of switches connected between the secondary winding of the flyback transformer and a ground and a plurality of capacitive loads and bidirectional switches to connect the loads to the secondary winding of the flyback transformer and a ground.
摘要:
A circuit for driving a plurality of capacitive actuators, the circuit having a low-voltage side, a high voltage side and a flyback transformer between the two. The low-voltage side comprises first and second pairs of low-side switches connected in series across an input voltage. The flyback transformer has a primary winding connected to the two pairs of switches. The high-voltage side has a pair of switches connected between the secondary winding of the flyback transformer and a ground and a plurality of capacitive loads and bidirectional switches to connect the loads to the secondary winding of the flyback transformer and a ground.
摘要:
The present invention reveals a semiconductor chip structure and its application circuit network, wherein the switching voltage regulator or converter is integrated with a semiconductor chip by chip fabrication methods, so that the semiconductor chip has the ability to regulate voltage within a specific voltage range. Therefore, when many electrical devices of different working voltages are placed on a Printed Circuit Board (PCB), only a certain number of semiconductor chips need to be constructed. Originally, in order to account for the different demands in voltage, power supply units of different output voltages, or a variety of voltage regulators need to be added. However, using the built-in voltage regulator or converter, the voltage range can be immediately adjusted to that which is needed. This improvement allows for easier control of electrical devices of different working voltages and decreases response time of electrical devices.
摘要:
A system for sensor network applications comprising a microcontroller for handling irregular events, at least one hardware accelerator for handling regular events, an event processor for interrupt handling and power management in the system, and a system bus. The microcontroller, hardware accelerator, and event processor each are connected to the system bus. The event processor gates power to the microcontroller to provide power to the microcontroller only for processing related to irregular events requiring processing by the microcontroller. The event processor further may gate power to the hardware accelerator. The system may further include a message processor and a plurality of sensors.
摘要:
In a preferred embodiment, the present invention is a system for avoiding voltage emergencies. The system comprises a microprocessor, an actuator for throttling the microprocessor, a voltage emergency detector and a voltage emergency predictor. The voltage emergency detector may comprise, for example, a checkpoint recovery mechanism or a sensor. The voltage emergency predictor of a preferred embodiment comprises means for tracking control flow instructions and microarchitectural events, means for storing voltage emergency signatures that cause voltage emergencies, means for comparing current control flow and microarchitectural events with stored voltage emergency signatures to predict voltage emergencies, and means for actuating said actuator to throttle said microprocessor to avoid predicted voltage emergencies.
摘要:
A circuit having dynamically controllable power. The circuit comprises a plurality of pipelined stages, each of the pipelined stages comprising two clocking domains, a plurality of switching circuits, each switching circuit being connected to one of the pipelined stages, first and second power sources connected to each of the plurality of pipelined stages through the switching circuits, the first power source supplying a first voltage and the second power source supplying a second voltage, wherein the first and second power sources each may be applied to a pipelined stage independently of other pipelined stages, first and second complementary clocks, and a plurality of latches connected to the first and second complementary clocks and to the plurality of pipelined stages for proving latch-based clocking to control the first and second clocking domains and to enable time-borrowing across the plurality of switching circuits. The first voltage differs from the second voltage and the plurality of pipelined stages interpolates between the first and second voltages to provide differing effective voltages between the first and second voltages.
摘要:
The present invention reveals a semiconductor chip structure and its application circuit network, wherein the switching voltage regulator or converter is integrated with a semiconductor chip by chip fabrication methods, so that the semiconductor chip has the ability to regulate voltage within a specific voltage range. Therefore, when many electrical devices of different working voltages are placed on a Printed Circuit Board (PCB), only a certain number of semiconductor chips need to be constructed. Originally, in order to account for the different demands in voltage, power supply units of different output voltages, or a variety of voltage regulators need to be added. However, using the built-in voltage regulator or converter, the voltage range can be immediately adjusted to that which is needed. This improvement allows for easier control of electrical devices of different working voltages and decreases response time of electrical devices.
摘要:
In a preferred embodiment, the present invention is a system for avoiding voltage emergencies. The system comprises a microprocessor, an actuator for throttling the microprocessor, a voltage emergency detector and a voltage emergency predictor. The voltage emergency detector may comprise, for example, a checkpoint recovery mechanism or a sensor. The voltage emergency predictor of a preferred embodiment comprises means for tracking control flow instructions and microarchitectural events, means for storing voltage emergency signatures that cause voltage emergencies, means for comparing current control flow and microarchitectural events with stored voltage emergency signatures to predict voltage emergencies, and means for actuating said actuator to throttle said microprocessor to avoid predicted voltage emergencies.
摘要:
A circuit having dynamically controllable power. The circuit comprises a plurality of pipelined stages, each of the pipelined stages comprising two clocking domains, a plurality of switching circuits, each switching circuit being connected to one of the pipelined stages, first and second power sources connected to each of the plurality of pipelined stages through the switching circuits, the first power source supplying a first voltage and the second power source supplying a second voltage, wherein the first and second power sources each may be applied to a pipelined stage independently of other pipelined stages, first and second complementary clocks, and a plurality of latches connected to the first and second complementary clocks and to the plurality of pipelined stages for proving latch-based clocking to control the first and second clocking domains and to enable time-borrowing across the plurality of switching circuits. The first voltage differs from the second voltage and the plurality of pipelined stages interpolates between the first and second voltages to provide differing effective voltages between the first and second voltages.