Abstract:
A light emitting device includes a semiconductor light emitting element including a semiconductor stacked-layer body and an electrode disposed on a first surface of the semiconductor stacked-layer body; a resin member disposed on a first surface side of the semiconductor stacked-layer body; and a metal layer disposed in the resin member and electrically connected to the electrode. A recess is defined in an upper surface of the resin member. The metal layer is projected from the upper surface of the resin member, and is disposed to surround at least a portion of the recess.
Abstract:
A semiconductor device has a light emitting element, and a resin layer; the light emitting element includes a semiconductor laminated body in which a first semiconductor layer and a second semiconductor layer are laminated in sequence, a second electrode connected to the second semiconductor layer on an upper surface of the second semiconductor layer that forms an upper surface of the semiconductor laminated body, and a first electrode connected to the first semiconductor layer on an upper surface of the first semiconductor layer in which a portion of the second semiconductor layer on one surface of the semiconductor laminated body is removed and a portion of the first semiconductor layer is exposed; and the resin layer is configured to cover at least a side surface of the light emitting element, and an upper surface of the resin layer is lower than the upper surface of the semiconductor laminated body.
Abstract:
A light emitting device includes a light emitting element, a light transmissive member, and a cover member. The light transmissive member is disposed on an upper face of the light emitting element. The cover member covers a lateral face of the light emitting element and a lateral face of the light transmissive member, and includes first and second cover members. The first cover member is disposed adjacent to the lateral face of the light emitting element and the lateral face of the light transmissive member, and contains a first light reflecting material and a fluorine-based first resin. The second cover member covers the first cover member, and contains a second light reflecting material and a second resin. A refractive index difference between the first light reflecting material and the first resin is larger than a refractive index difference between the second light reflecting material and the second resin.
Abstract:
A light emitting device includes a light emitting element having a light emitting surface from which the light emitting element is configured to emit a first light having a first peak emission wavelength in a wavelength range of 380 nm or longer and 430 nm or shorter. A light transform layer is disposed on the light emitting surface of the light emitting element to transform the first light to a second light having a second peak wavelength longer than the first peak wavelength. A reflecting film is provided on the light transform layer to reflect the first light and to transmit the second light. The reflecting film has a reflectivity of 40% or more in a reflection spectrum of the reflecting film with respect to a light having a wavelength of 380 nm or longer and 430 nm or shorter and an angle of incidence from 0° to 85°.
Abstract:
A light emitting device includes a light emitting element having a light emitting surface from which the light emitting element is configured to emit a first light having a first peak emission wavelength in a wavelength range of 380 nm or longer and 430 nm or shorter. A light transform layer is disposed on the light emitting surface of the light emitting element to transform the first light to a second light having a second peak wavelength longer than the first peak wavelength. A reflecting film is provided on the light transform layer to reflect the first light and to transmit the second light. The reflecting film has a reflectivity of 40% or more in a reflection spectrum of the reflecting film with respect to a light having a wavelength of 380 nm or longer and 430 nm or shorter and an angle of incidence from 0° to 85°.
Abstract:
A light-emitting device includes: a mounting base; a plurality of light-emitting elements mounted on or above the mounting base; a plurality of light-transmissive members respectively disposed on upper surfaces of the plurality of light-emitting elements; a plurality of light guide members respectively covering lateral surfaces of the plurality of light-emitting elements; a plurality of antireflective films respectively disposed on upper surfaces of the plurality of the light-transmissive members; and a covering member covering lateral surfaces of the plurality of antireflective films.
Abstract:
A method of manufacturing a light-emitting device includes: directly bonding a plurality of light-emitting elements to a collective light-transmissive member having a plate shape, each light-emitting element comprising a plurality of electrodes; subsequently, forming stud bumps on each electrode of each light-emitting element; subsequently, dividing the collective light-transmissive member to obtain a plurality of light-transmissive members on each of which one or more of the light-emitting elements are bonded; and subsequently, mounting the light-emitting elements on or above a mounting base by a flip-chip technique.
Abstract:
A light emitting device includes a semiconductor light emitting element including a semiconductor stacked-layer body and an electrode disposed on a first surface of the semiconductor stacked-layer body; a resin member disposed on a first surface side of the semiconductor stacked-layer body; and a metal layer disposed in the resin member and electrically connected to the electrode. A recess is defined in an upper surface of the resin member. The metal layer is projected from the upper surface of the resin member, and is disposed to surround at least a portion of the recess.
Abstract:
A nitride semiconductor light-emitting device includes a layered portion emitting light on a substrate. The layered portion includes an n-type semiconductor layer, an active layer, and a p-type semiconductor layer. The periphery of the layered portion is inclined, and the surface of the n-type semiconductor layer is exposed at the periphery. An n electrode is disposed on the exposed surface of the n-type semiconductor layer. This device structure can enhance the emission efficiency and the light extraction efficiency.