摘要:
A surface-emission laser diode includes a distributed Bragg reflector tuned to wavelength of 1.1 μm or longer, wherein the distributed Bragg reflector includes an alternate repetition of a low-refractive index layer and a high-refractive index layer, with a heterospike buffer layer having an intermediate refractive index interposed therebetween with a thickness in the range of 5-50 nm.
摘要:
A surface-emission laser diode includes a distributed Bragg reflector tuned to a wavelength of 1.1 μm or longer, wherein the distributed Bragg reflector includes an alternate repetition of a low-refractive index layer and a high-refractive index layer, with a heterospike buffer layer having an intermediate refractive index interposed therebetween with a thickness in the range of 5-50 nm
摘要:
A surface-emission laser diode includes a distributed Bragg reflector tuned to wavelength of 1.1 μm or longer, wherein the distributed Bragg reflector includes an alternate repetition of a low-refractive index layer and a high-refractive index layer, with a heterospike buffer layer having an intermediate refractive index interposed therebetween with a thickness in the range of 5-50 nm.
摘要:
A surface-emission laser diode includes a distributed Bragg reflector tuned to wavelength of 1.1 μm or longer, wherein the distributed Bragg reflector includes an alternate repetition of a low-refractive index layer and a high-refractive index layer, with a heterospike buffer layer having an intermediate refractive index interposed therebetween with a thickness in the range of 5-50 nm.
摘要:
A surface-emission laser diode includes a distributed Bragg reflector tuned to wavelength of 1.1 μm or longer, wherein the distributed Bragg reflector includes an alternate repetition of a low-refractive index layer and a high-refractive index layer, with a heterospike buffer layer having an intermediate refractive index interposed therebetween with a thickness in the range of 5–50 nm.
摘要:
A semiconductor light-emitting device has a semiconductor layer containing Al between a substrate and an active layer containing nitrogen, wherein Al and oxygen are removed from a growth chamber before growing said active layer and a concentration of oxygen incorporated into said active layer together with Al is set to a level such that said semiconductor light-emitting device can perform a continuous laser oscillation at room temperature.
摘要:
A vertical-cavity, surface-emission-type laser diode includes an optical cavity formed of an active region sandwiched by upper and lower reflectors, wherein the lower reflector is formed of a distributed Bragg reflector and a non-optical recombination elimination layer is provided between an active layer in the active region and the lower reflector.
摘要:
A semiconductor light-emitting device has a semiconductor layer containing Al between a substrate and an active layer containing nitrogen, wherein Al and oxygen are removed from a growth chamber before growing said active layer and a concentration of oxygen incorporated into said active layer together with Al is set to a level such that said semiconductor light-emitting device can perform a continuous laser oscillation at room temperature.
摘要:
A semiconductor light-emitting device has a semiconductor layer containing Al between a substrate and an active layer containing nitrogen, wherein Al and oxygen are removed from a growth chamber before growing said active layer and a concentration of oxygen incorporated into said active layer together with Al is set to a level such that said semiconductor light-emitting device can perform a continuous laser oscillation at room temperature.
摘要:
A semiconductor light-emitting device has a semiconductor layer containing Al between a substrate and an active layer containing nitrogen, wherein Al and oxygen are removed from a growth chamber before growing said active layer and a concentration of oxygen incorporated into said active layer together with Al is set to a level such that said semiconductor light-emitting device can perform a continuous laser oscillation at room temperature.