Abstract:
A plurality of unit MISFET elements connected in parallel with each other to make up a power MISFET are formed in an LDMOSFET forming region on a main surface of a semiconductor substrate. A control circuit that controls a gate voltage of the power MISFET is formed in a driver circuit region on the main surface of the semiconductor substrate. A wiring structure having a plurality of wiring layers made of the same metal material is formed on the semiconductor substrate. The gate electrodes of the plurality of unit MISFET elements formed in the LDMOSFET forming region are electrically connected to each other via gate wirings formed in all of the plurality of wiring layers made of the same metal material.
Abstract:
A terrace insulating film (SL) to be overridden by a gate electrode (G) of an nLDMOS device is configured by LOCOS, and a device isolation portion (SS) is configured by STI. Furthermore, on an outermost periphery of an active region where a plurality of nLDMOS devices are formed, a guard ring having the same potential as that of a drain region (D) is provided. And, via this guard ring, the device isolation portion (SS) is formed in a periphery of the active region, thereby not connecting but isolating the terrace insulating film (SL) and the device isolation portion (SS) from each other.
Abstract:
A plurality of unit MISFET elements connected in parallel with each other to make up a power MISFET are formed in an LDMOSFET forming region on a main surface of a semiconductor substrate. A control circuit that controls a gate voltage of the power MISFET is formed in a driver circuit region on the main surface of the semiconductor substrate. A wiring structure having a plurality of wiring layers made of the same metal material is formed on the semiconductor substrate. The gate electrodes of the plurality of unit MISFET elements formed in the LDMOSFET forming region are electrically connected to each other via gate wirings formed in all of the plurality of wiring layers made of the same metal material.
Abstract:
A control electrode GE1 is formed in a lower portion of a trench TR1 formed in a semiconductor substrate SUB, and a gate electrode GE2 is formed in an upper portion inside the trench TR1. An insulating film G1 is formed between the control electrode GE1 and a side wall and a bottom surface of the trench TR1, an insulating film G2 is formed between the side wall of the trench TR1 and the gate electrode GE2, and an insulating film G3 is formed between the control electrode GE1 and the gate electrode GE2. A region adjacent to the trench TR1 includes an n+-type semiconductor region NR for a source, a p-type semiconductor region PR for a channel formation, and a semiconductor region for a drain. A wiring connected to the control electrode GE1 is not connected to a wiring connected to the gate electrode GE2, and is not connected to a wiring connected to the n+-type semiconductor region NR for a source.
Abstract:
In order to reduce the cost and the like of a power control device including a semiconductor device such as a driver IC, as well as an electronic system, the driver IC includes a high side driver, a level shift circuit, first and second transistors, and a comparator circuit. The first transistor is formed in a termination area. The second transistor is formed in the termination region and is driven by a first power supply voltage. The comparator circuit is formed in a first region to drive the first transistor to be ON when the voltage of a sense node is lower than the first power supply voltage, while driving the first transistor to be OFF when the voltage of the sense node is higher than the first power supply voltage. The second transistor is a depression type transistor.
Abstract:
A control electrode GE1 is formed in a lower portion of a trench TR1 formed in a semiconductor substrate SUB, and a gate electrode GE2 is formed in an upper portion inside the trench TR1. An insulating film G1 is formed between the control electrode GE1 and a side wall and a bottom surface of the trench TR1, an insulating film G2 is formed between the side wall of the trench TR1 and the gate electrode GE2, and an insulating film G3 is formed between the control electrode GE1 and the gate electrode GE2. A region adjacent to the trench TR1 includes an n+-type semiconductor region NR for a source, a p-type semiconductor region PR for a channel formation, and a semiconductor region for a drain. A wiring connected to the control electrode GE1 is not connected to a wiring connected to the gate electrode GE2, and is not connected to a wiring connected to the n+-type semiconductor region NR for a source.
Abstract:
A driver integrated circuit includes a bootstrap circuit (BSC) configured to output a boot power supply voltage (VB) based on a first power supply voltage, the boot power supply voltage being higher than the first power supply voltage; a level shift circuit (LSC) configured to output an output pulse signal based on an input pulse signal and the boot power supply voltage; a high side driving circuit (HSU) configured to output a high side driving voltage based on the boot power supply voltage and the output pulse signal, wherein the bootstrap circuit includes a sense metal oxide semiconductor (MOS) transistor and a boot MOS transistor, wherein the sense MOS transistor includes a depression-type transistor.
Abstract:
A control electrode GE1 is formed in a lower portion of a trench TR1 formed in a semiconductor substrate SUB, and a gate electrode GE2 is formed in an upper portion inside the trench TR1. An insulating film G1 is formed between the control electrode GE1 and a side wall and a bottom surface of the trench TR1, an insulating film G2 is formed between the side wall of the trench TR1 and the gate electrode GE2, and an insulating film G3 is formed between the control electrode GE1 and the gate electrode GE2. A region adjacent to the trench TR1 includes an n+-type semiconductor region NR for a source, a p-type semiconductor region PR for a channel formation, and a semiconductor region for a drain. A wiring connected to the control electrode GE1 is not connected to a wiring connected to the gate electrode GE2, and is not connected to a wiring connected to the n+-type semiconductor region NR for a source.
Abstract:
A plurality of unit MISFET elements connected in parallel with each other to make up a power MISFET are formed in an LDMOSFET forming region on a main surface of a semiconductor substrate. A control circuit that controls a gate voltage of the power MISFET is formed in a driver circuit region on the main surface of the semiconductor substrate. A wiring structure having a plurality of wiring layers made of the same metal material is formed on the semiconductor substrate. The gate electrodes of the plurality of unit MISFET elements formed in the LDMOSFET forming region are electrically connected to each other via gate wirings formed in all of the plurality of wiring layers made of the same metal material.