Abstract:
Provided are semiconductor packages and methods of fabricating the same. The method may include mounting a first semiconductor chip including chip and heat-transfer regions and a lower heat-transfer pattern disposed on the heat-transfer region, on a substrate, mounting a second semiconductor chip on the chip region of the first semiconductor chip, forming a mold layer on the substrate to enclose the first and second semiconductor chips, forming an opening in the mold layer to expose at least a portion of the lower heat-transfer pattern, forming a heat-pathway pattern in the opening, and forming a heat-dissipating part on the second semiconductor chip and the mold layer to be connected to the heat-pathway pattern.
Abstract:
A semiconductor chip includes a substrate having a low-k material layer. An electrode pad is disposed the substrate. A first protection layer at least partially surrounds the electrode pad. The first protection layer includes a first opening at an upper portion thereof. A buffer pad is electrically connected to the electrode pad. A second protection layer at least partially surrounds the buffer pad. The second protection layer includes a second opening at an upper portion thereof. A pillar layer and a solder layer are sequentially stacked on the buffer pad. A thickness of the buffer pad is greater than a thickness of the electrode pad. A width of the first opening in a first direction parallel to an upper surface of the semiconductor substrate is equal to or greater than a width of the second opening in the first direction.
Abstract:
Provided are semiconductor packages having through electrodes and methods of fabricating the same. The method may include may include forming a wafer-level package including first semiconductor chips stacked on a second semiconductor chip, forming a chip-level package including fourth semiconductor chips stacked on a third semiconductor chip stacking a plurality of the chip-level packages on a back surface of the second semiconductor substrate of the wafer-level package, polishing the first mold layer of the wafer-level package and the first semiconductor chips to expose a first through electrodes of the first semiconductor chip, and forming outer electrodes on the polished first semiconductor chips to be connected to the first through electrodes, respectively.
Abstract:
Semiconductor packages having through electrodes and methods for fabricating the same are provided. The method may comprise providing a first substrate including a first circuit layer, forming a front mold layer on a front surface of the first substrate, grinding a back surface of the first substrate, forming a first through electrode that penetrates the first substrate to be electrically connected to the first circuit layer, providing a second substrate on the back surface of the first substrate, the second substrate including a second circuit layer that is electrically connected to the first through electrode, forming a back mold layer on the back surface of the first substrate, the back mold layer encapsulating the second substrate, and removing the front mold layer.
Abstract:
A semiconductor package and a method of fabricating the same. The method may include mounting a lower stack including a plurality of lower semiconductor chips on a substrate and mounting an upper stack including a plurality of upper semiconductor chips on the lower stack. According to example embodiments of the inventive concept, the semiconductor package can be easily fabricated.
Abstract:
Semiconductor packages including a heat spreader and methods of forming the same are provided. The semiconductor packages may include a first semiconductor chip, a second semiconductor chip, and a heat spreader stacked sequentially. The semiconductor packages may also include a thermal interface material (TIM) layer surrounding the second semiconductor chip and directly contacting a sidewall of the second semiconductor chip. An upper surface of the TIM layer may directly contact a lower surface of the heat spreader, and a sidewall of the TIM layer may be substantially coplanar with a sidewall of the heat spreader. In some embodiments, a sidewall of the first semiconductor chip may be substantially coplanar with the sidewall of the TIM layer.
Abstract:
Provided are semiconductor packages having through electrodes and methods of fabricating the same. The method may include may include forming a wafer-level package including first semiconductor chips stacked on a second semiconductor chip, forming a chip-level package including fourth semiconductor chips stacked on a third semiconductor chip stacking a plurality of the chip-level packages on a back surface of the second semiconductor substrate of the wafer-level package, polishing the first mold layer of the wafer-level package and the first semiconductor chips to expose a first through electrodes of the first semiconductor chip, and forming outer electrodes on the polished first semiconductor chips to be connected to the first through electrodes, respectively.
Abstract:
A semiconductor chip includes a substrate. An electrode pad is disposed on the substrate. The electrode pad includes a low-k material layer. A first protection layer at least partially surrounds the electrode pad. The first protection layer includes a first opening at an upper portion thereof. A buffer pad is electrically connected to the electrode pad. A second protection layer at least partially surrounds the buffer pad. The second protection layer includes a second opening at an upper portion thereof. A pillar layer and a solder layer are sequentially stacked on the buffer pad. A thickness of the buffer pad is greater than a thickness of the electrode pad. A width of the first opening in a first direction parallel to an upper surface of the semiconductor substrate is equal to or greater than a width of the second opening in the first direction.
Abstract:
An antenna device implemented to prevent the deterioration in radiation performance due to a metal mechanical part and an electronic device including the same is provided. The electronic device includes a metal member in a shape of a loop that is disposed in at least one area of the electronic device and a substrate (printed circuit board (PCB)) for supplying power to a preset location of the metal member in order to use the metal member as an antenna radiator, wherein at least one location of the metal member that differs from the power-supplied location is grounded through the substrate.
Abstract:
A semiconductor device and a method of fabricating the same includes providing a first semiconductor chip which has first connection terminals, providing a second semiconductor chip which comprises top and bottom surfaces facing each other and has second connection terminals and a film-type first underfill material formed on the bottom surface thereof, bonding the first semiconductor chip to a mounting substrate by using the first connection terminals, bonding the first semiconductor chip and the second semiconductor chip by using the first underfill material, and forming a second underfill material which fills a space between the mounting substrate and the first semiconductor chip and covers side surfaces of the first semiconductor chip and at least part of side surfaces of the second semiconductor chip.