Abstract:
A semiconductor memory device capable of improving performance by the use of a charge storage layer including a ferroelectric material is provided. The semiconductor memory device includes a substrate, a tunnel insulating layer contacting the substrate, on the substrate, a charge storage layer contacting the tunnel insulating layer and including a ferroelectric material, on the tunnel insulating layer, a barrier insulating layer contacting the charge storage layer, on the charge storage layer, and a gate electrode contacting the barrier insulating layer, on the barrier insulating layer.
Abstract:
A three-dimensional semiconductor device includes a stacked structure including a plurality of conductive layers stacked on a substrate, a distance along a first direction between sidewalls of an upper conductive layer and a lower conductive layer being smaller than a distance along a second direction between sidewalls of the upper conductive layer and the lower conductive layer, the first and second directions crossing each other and defining a plane parallel to a surface supporting the substrate, and vertical channel structures penetrating the stacked structure.
Abstract:
An integrated circuit device is provided. The integrated circuit device may include a central processing unit (CPU) configured to operate in one of a plurality of modes and a wake-up control circuit configured to control the CPU. The wake-up control circuit may include a clock generator configured to generate an internal clock signal, a multiplexer configured to select a signal from among an external signal and the internal clock signal and to provide the CPU with the selected signal as an operating clock signal, and a controller configured to control the CPU and the clock generator based on the external signal.
Abstract:
A semiconductor device includes a semiconductor pattern on a substrate, gate structures on sidewalls of the semiconductor pattern, the gate structures being spaced apart from one another, insulating interlayers among the gate structures, wherein an uppermost insulating interlayer is lower than an upper face of the semiconductor pattern, a common source line contacting the substrate and protruding above the uppermost insulating interlayer, an etch stop layer pattern on the semiconductor pattern and on the common source line wherein the common source line protrudes above the uppermost insulating interlayer, an additional insulating interlayer on the uppermost insulating interlayer, and contact plugs extending through the additional insulating interlayer so as to make contact with the semiconductor pattern and the common source line, respectively.
Abstract:
A semiconductor device includes a substrate. A first channel pattern is disposed on the substrate. The first channel pattern includes a first side and a second side opposite to each other in a first direction. A first gate electrode is disposed on the first side of the first channel pattern. A first source/drain electrode is disposed on the first side of the first channel pattern. A second source/drain electrode is disposed on the second side of the first channel pattern. The first gate electrode overlaps the second source/drain electrode in the first direction.
Abstract:
A power management integrated circuit includes a nonvolatile memory configured to store code data for driving the power management integrated circuit; a processor configured to execute program data stored at a volatile memory; and a decompression logic separated from the processor, the decompression logic being formed of hardware, configured to decompress the code data to generate program data, and configured to store the program data at the volatile memory.
Abstract:
A three-dimensional semiconductor device includes a stacked structure including a plurality of conductive layers stacked on a substrate, a distance along a first direction between sidewalls of an upper conductive layer and a lower conductive layer being smaller than a distance along a second direction between sidewalls of the upper conductive layer and the lower conductive layer, the first and second directions crossing each other and defining a plane parallel to a surface supporting the substrate, and vertical channel structures penetrating the stacked structure.
Abstract:
Disclosed are methods of forming PN junction structures, methods of fabricating semiconductor devices using the same, and semiconductor devices fabricated by the same. The method of forming a PN junction structure includes: forming on a substrate a first material layer that includes first transition metal atoms and first chalcogen atoms, loading the first material layer into a process chamber and supplying a gas of second chalcogen atoms, and forming a second material layer by substituting the second chalcogen atoms for the first chalcogen atoms on a selected portion of the first material layer. The first material layer has one of n-type conductivity and p-type conductivity. The second material layer has the other of the n-type conductivity and the p-type conductivity.
Abstract:
A semiconductor memory device includes a stacked structure on a substrate and a vertical structure penetrating the stacked structure. The stacked structured includes a plurality of conductive lines stacked on the substrate. The vertical structure may include a vertical insulating pattern and a channel film extending along sidewalls of the vertical insulating pattern. The vertical insulating pattern may include an inner region and an outer region. The outer region of the vertical insulating pattern may be placed between the channel film and the inner region of the vertical insulating pattern, and the outer region of the vertical insulating pattern may include a diffused metal.
Abstract:
An integrated circuit device is provided. The integrated circuit device may include a central processing unit (CPU) configured to operate in one of a plurality of modes and a wake-up control circuit configured to control the CPU. The wake-up control circuit may include a clock generator configured to generate an internal clock signal, a multiplexer configured to select a signal from among an external signal and the internal clock signal and to provide the CPU with the selected signal as an operating clock signal, and a controller configured to control the CPU and the clock generator based on the external signal.