Abstract:
Resistive RAM (RRAM) devices having increased uniformity and related manufacturing methods are described. Greater uniformity of performance across an entire chip that includes larger numbers of RRAM cells can be achieved by uniformly creating enhanced channels in the switching layers through the use of radiation damage. The radiation, according to various described embodiments, can be in the form of ions, electromagnetic photons, neutral particles, electrons, and ultrasound.
Abstract:
Resistive RAM (RRAM) devices having increased uniformity and related manufacturing methods are described. Greater uniformity of performance across an entire chip that includes larger numbers of RRAM cells can be achieved by uniformly creating enhanced channels in the switching layers through the use of radiation damage. The radiation, according to various described embodiments, can be in the form of ions, electromagnetic photons, neutral particles, electrons, and ultrasound.
Abstract:
Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as holes, effectively increase the absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more. Their thickness dimensions allow them to be conveniently integrated on the same Si chip with CMOS, BiCMOS, and other electronics, with resulting packaging benefits and reduced capacitance and thus higher speeds.
Abstract:
Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures arc described. The microstructures, such as pillars and/or holes, effectively increase the effective absorption length resulting in a greater absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more.
Abstract:
Resistive RAM (RRAM) devices having increased uniformity and related manufacturing methods are described. Greater uniformity of performance across an entire chip that includes larger numbers of RRAM cells can be achieved by uniformly creating enhanced channels in the switching layers through the use of radiation damage. The radiation, according to various described embodiments, can be in the form of ions, electromagnetic photons, neutral particles, electrons, and ultrasound.
Abstract:
Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as pillars and/or holes, effectively increase the effective absorption length resulting in a greater absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more.
Abstract:
Resistive RAM (RRAM) devices having increased reliability and related manufacturing methods are described. Greater reliability of RRAM cells over time can be achieved by avoiding direct contact of metal electrodes with the device switching layer. The contact can be avoided by cladding the switching layer in a material such as silicon or using electrodes that may contain metal but have regions that are adjacent the switching layer and lack free metal ions except for possible trace amounts.
Abstract:
Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as holes, effectively increase the absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more. Their thickness dimensions allow them to be conveniently integrated on the same Si chip with CMOS, BiCMOS, and other electronics, with resulting packaging benefits and reduced capacitance and thus higher speeds.
Abstract:
Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as holes, effectively increase the absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more. Their thickness dimensions allow them to be conveniently integrated on the same Si chip with CMOS, BiCMOS, and other electronics, with resulting packaging benefits and reduced capacitance and thus higher speeds.
Abstract:
An electrowetting pixel structure includes a substrate, a hydrophobic dielectric layer, a non-polar liquid, a polar liquid, at least one electrode, and at least one contact hole. The hydrophobic dielectric layer is formed on the substrate, the non-polar liquid covers one surface of the hydrophobic dielectric layer, and the polar liquid is provided on the hydrophobic dielectric layer where the non-polar liquid and the polar liquid are immiscible. The electrode is formed on the substrate and divides the substrate into an electrode section and a non-electrode section. When a voltage is applied to the electrowetting pixel structure, the non-polar liquid contracts on the hydrophobic dielectric layer and is confined to an area substantially overlapping the non-electrode section. The contact hole is formed on the substrate at a position away from the non-electrode section of the electrowetting pixel structure.