摘要:
A liquid crystal display device which includes a pair of substrates, a pixel including a liquid crystal element between the pair of substrates, a lighting portion provided on the outer side of the pair of substrates, a first polarizing member between the pair of substrates and the lighting portion, a reflective member provided outside the lightning portion, a second polarizing member on a side opposite to the first polarizing member with the pair of substrates provided therebetween, and a first optical sensor and a second optical sensor. The first optical sensor has a function of detecting illuminance of external light, and the second optical sensor has a function of detecting a color tone of polarized light emitted from the pixel portion. The lightning portion can emits light having a predetermined wavelength depending on the color tone of the pixel portion which is detected by the second optical sensor.
摘要:
To provide a photoelectric conversion device with improved photoelectric conversion characteristics and cost competitiveness. A photoelectric conversion device including a semiconductor junction has a semiconductor layer in which a needle-like crystal is made to grow over an impurity semiconductor layer. The impurity semiconductor layer is formed of a microcrystalline semiconductor and includes an impurity imparting one conductivity type. An amorphous semiconductor layer is deposited on a microcrystalline semiconductor layer by setting the flow rate of a dilution gas (typically silane) to 1 time to 6 times the flow rate of a semiconductor source gas (typically hydrogen) at the time of deposition. Thus, a crystal with a three-dimensional shape tapered in a direction of the deposition of a film, i.e., in a direction from the microcrystalline semiconductor layer to the amorphous semiconductor layer is made to grow.
摘要:
To provide a photoelectric conversion device with improved photoelectric conversion characteristics and cost competitiveness. A photoelectric conversion device including a semiconductor junction has a semiconductor layer in which a needle-like crystal is made to grow over an impurity semiconductor layer. The impurity semiconductor layer is formed of a microcrystalline semiconductor and includes an impurity imparting one conductivity type. An amorphous semiconductor layer is deposited on a microcrystalline semiconductor layer by setting the flow rate of a dilution gas (typically silane) to 1 time to 6 times the flow rate of a semiconductor source gas (typically hydrogen) at the time of deposition. Thus, a crystal with a three-dimensional shape tapered in a direction of the deposition of a film, i.e., in a direction from the microcrystalline semiconductor layer to the amorphous semiconductor layer is made to grow.
摘要:
In a case of forming a bottom-gate thin film transistor, a step of forming a microcrystalline semiconductor film over a gate insulating film by a plasma CVD method, and a step of forming an amorphous semiconductor film over the microcrystalline semiconductor film are performed. In the step of forming the microcrystalline semiconductor film, the pressure in the reaction chamber is set at or below 10−5 Pa once, the substrate temperature is set in the range of 120° C. to 220° C., plasma is generated by introducing hydrogen and a silicon gas, hydrogen plasma is made to act on a reaction product formed on a surface of the gate insulating film to perform removal while performing film formation. Moreover, the plasma is generated by applying a first high-frequency electric power of an HF band a second high-frequency electric power of a VHF band superimposed on each other.
摘要:
An object of one embodiment of the present invention is to provide a technique for manufacturing a dense crystalline semiconductor film (e.g., a microcrystalline semiconductor film) without a cavity between crystal grains. A plasma region is formed between a first electrode and a second electrode by supplying high-frequency power of 60 MHz or less to the first electrode under a condition where a pressure of a reactive gas in a reaction chamber of a plasma CVD apparatus is set to 450 Pa to 13332 Pa, and a distance between the first electrode and the second electrode of the plasma CVD apparatus is set to 1 mm to 20 mm; crystalline deposition precursors are formed in a gas phase including the plasma region; a crystal nucleus of 5 nm to 15 nm is formed by depositing the deposition precursors; and a microcrystalline semiconductor film is formed by growing a crystal from the crystal nucleus.
摘要:
The present invention is provided in order to remove contamination due to contaminant impurities of the interfaces of each film which forms a TFT, which is the major factor that reduces the reliability of TFTs. By connecting a washing chamber and a film formation chamber, film formation can be carried out without exposing TFTs to the air during the time from washing step to the film formation step and it becomes possible to maintain the cleanliness of the interfaces of each film which form the TFT.
摘要:
An object is to provide a manufacturing method of a microcrystalline semiconductor film with favorable quality over a large-area substrate. After forming a gate insulating film over a gate electrode, in order to improve quality of a microcrystalline semiconductor film formed in an initial stage, glow discharge plasma is generated by supplying high-frequency powers with different frequencies, and a lower part of the film near an interface with the gate insulating film is formed under a first film formation condition, which is low in film formation rate but results in a good quality film. Thereafter, an upper part of the film is deposited under a second film formation condition with higher film formation rate, and further, a buffer layer is stacked on the microcrystalline semiconductor film.
摘要:
In an inverted staggered thin film transistor, a microcrystalline silicon film and a silicon carbide film are provided between a gate insulating film and wirings serving as a source wiring and a drain wiring. The microcrystalline silicon film is formed on the gate insulating film side and the silicon carbide film is formed on the wiring side. In such a manner, a semiconductor device having favorable electric characteristics can be manufactured with high productivity.
摘要:
A stack including at least an insulating layer, a first electrode, and a first impurity semiconductor layer is provided over a supporting substrate; a first semiconductor layer to which an impurity element imparting one conductivity type is added is formed over the first impurity semiconductor layer; a second semiconductor layer to which an impurity element imparting the one conductivity type is added is formed over the first semiconductor layer under a condition different from that of the first semiconductor layer; crystallinity of the first semiconductor layer and crystallinity of the second semiconductor layer are improved by a solid-phase growth method to form a second impurity semiconductor layer; an impurity element imparting the one conductivity type and an impurity element imparting a conductivity type different from the one conductivity type are added to the second impurity semiconductor layer; and a gate electrode layer is formed via a gate insulating layer.
摘要:
To provide a method for manufacturing a transistor which has little variation in characteristics and favorable electric characteristics. A gate insulating film is formed over a gate electrode; a semiconductor layer including a microcrystalline semiconductor is formed over the gate insulating film; an impurity semiconductor layer is formed over the semiconductor layer; a mask is formed over the impurity semiconductor layer, and then the semiconductor layer and the impurity semiconductor layer are etched with use of the mask to form a semiconductor stacked body; the mask is removed and then the semiconductor stacked body is exposed to plasma generated in an atmosphere containing a rare gas to form a barrier region on a side surface of the semiconductor stacked body; and a wiring over the impurity semiconductor layer of the semiconductor stacked body is formed.