摘要:
Method and product for forming a dual damascene interconnect structure, wherein depositing a copper sulfide interface layer as sidewalls to the opening deters migration or diffusing of copper ions into the dielectric material.
摘要:
A method of bonding a bonding element to a metal bonding pad comprises the following steps. A semiconductor structure having an exposed, recessed metal bonding pad within a layer opening is provided. The layer has an upper surface. A conductive cap having a predetermined thickness is formed over the metal bonding pad. A bonding element is bonded to the conductive cap to form an electrical connection with the metal bonding pad.
摘要:
An inexpensive and safe copper removal method in the fabrication of integrated circuits is described. Copper is stripped or removed by a chemical mixture comprising an ammonium salt, an amine, and water. The rate of copper stripping can be controlled by varying the concentration of the ammonium salt component and the amount of water in the mixture. Also a novel chemical mixture for stripping copper and removing copper contamination is provided. The novel chemical mixture for removing or stripping copper comprises an ammonium salt, an amine, and water. For example, the novel chemical mixture may comprise ammonium fluoride, water, and ethylenediamine in a ratio of 1:1:1.
摘要:
A process for forming a first group of gate structures, designed to operate at a lower voltage than a simultaneously formed second group of gate structures, has been developed. The process features the thermal growth of a first silicon dioxide gate insulator layer, on a portion of the semiconductor substrate used for the lower voltage gate structures, while simultaneously forming a thicker, second silicon dioxide gate insulator layer on a portion of the semiconductor substrate used for the higher voltage gate structures. The thermal growth of the first, and second silicon dioxide gate insulator layers is accomplished via diffusion of the oxidizing species: through a thick, composite silicon nitride layer, to obtain the thinner, first silicon dioxide gate insulator layer, on a first portion of the semiconductor substrate; and through a thinner, silicon nitride layer, to obtain the thicker, second silicon dioxide gate insulator layer, on a second portion of the semiconductor substrate.
摘要:
A method to remove a metal from over a substrate in the fabrication of an integrated circuit device. The invention comprises providing a metal layer over a substrate. The metal layer is exposed to a reactant gas to form at least a solid metal containing product. The reactant gas preferably contains sulfur and oxygen. The reactant gas more preferably comprises sulfur dioxide or sulfur trioxide. The reactant gas is preferably heated and optionally exposed to a plasma. Next, the metal containing product is removed using a liquid, thereby removing at least portion of the metal layer from over the substrate.
摘要:
A method of forming interconnect structures in a semiconductor device, comprising the following steps. A semiconductor structure is provided. In the first embodiment, at least one metal line is formed over the semiconductor structure. A silicon-rich carbide barrier layer is formed over the metal line and semiconductor structure. Finally, a dielectric layer, that may be fluorinated, is formed over the silicon-rich carbide layer. In the second embodiment, at least one fluorinated dielectric layer, that may be fluorinated, is formed over the semiconductor structure. The dielectric layer is patterned to form an opening therein. A silicon-rich carbide barrier layer is formed within the opening. A metallization layer is deposited over the structure, filling the silicon-rich carbide barrier layer lined opening. Finally, the metallization layer may be planarized to form a planarized metal structure within the silicon-rich carbide barrier layer lined opening.
摘要:
A method of bonding a bonding element to a metal bonding pad, comprising the following steps. A semiconductor structure having an exposed metal bonding pad within a passivation layer opening is provided. The bonding pad has an upper surface. A bonding element is positioned to contact the bonding pad upper surface. A bonding solution is applied within the passivation layer opening, covering the bonding pad and a portion of the bonding element. The structure is annealed by heating said bonding element to selectively solidify the bonding solution proximate said contact of said bonding element to said bonding pad, bonding the bonding element to the bonding pad.
摘要:
A method for forming an extended metal gate without poly wrap around effects. A semiconductor structure is provided having a gate structure thereon. The gate structure comprising a gate dielectric layer, a gate silicon layer, a doped silicon oxide layer, and a disposable gate layer stacked sequentially. Spacers are formed on the sidewalls of the gate structure. A dielectric gapfill layer is formed over the semiconductor structure and the gate structure and planarized, stopping on the disposable gate layer. A first silicon nitride layer is formed over the disposable gate layer, and a dielectric layer is formed over the first silicon nitride layer. The dielectric layer is patterned to form a trench over the gate structure; wherein the trench has a width greater than the width of the gate structure. The first silicon nitride layer in the bottom of the trench and the disposable gate layer are removed using one or more selective etching processes. The doped silicon oxide layer is removed using an etch with a high selectivity of doped silicon oxide to undoped silicon oxide. A barrier layer is formed over the gate silicon layer, and a metal gate layer is formed on the barrier layer; whereby the metal gate layer has a greater width than the gate structure.
摘要:
A new method of depositing a copper layer, using disproportionation of Cu(I) ions from a solution stabilized by a polar organic solvent, for single and dual damascene interconnects in the manufacture of an integrated circuit device has been achieved. A dielectric layer, which may comprise a stack of dielectric material, is provided overlying a semiconductor substrate. The dielectric layer is patterned to form vias and trenches for planned dual damascene interconnects. A barrier layer is deposited overlying the dielectric layer to line the vias and trenches. A simple Cu(I) ion solution, stabilized by a polar organic solvent, is coated overlying said barrier layer. Water is added to the stabilized simple Cu(I) ion solution to cause disproportionation of the simple Cu(I) ion from the Cu(I) ion solution. A copper layer is deposited overlying the barrier layer. The copper layer may comprise a thin seed layer for use in subsequent electroplating or electroless plating of copper or may comprise a thick copper layer to fill the vias and trenches. The integrated circuit is completed.
摘要:
A method and structure for forming a damascene structure with reduced capacitance by forming one or more of: the passivation layer, the etch stop layer, and the cap layer using a low dielectric constant material comprising carbon nitride, boron nitride, or boron carbon nitride. The method begins by providing a semiconductor structure having a first conductive layer thereover. A passivation layer is formed on the first conductive layer. A first dielectric layer is formed over the passivation layer, and an etch stop layer is formed over the first dielectric layer. A second dielectric layer is formed over the etch stop layer, and an optional cap layer can be formed over the second dielectric layer. The cap layer, the second dielectric layer, the etch stop layer, and the first dielectric layer are patterned to form a via opening stopping on said passivation layer and a trench opening stopping on the first conductive layer. A carbon nitride passivation layer, etch stop layer, or cap layer can be formed by magnetron sputtering from a graphite target in a nitrogen atmosphere. A boron nitride passivation layer, etch stop layer, or cap layer can be formed by PECVD using B.sub.2 H.sub.6, ammonia, and nitrogen. A boron carbon nitride passivatation layer, etch stop layer, or cap layer can be formed by magnetron sputtering from a graphite target in a nitrogen and B.sub.2 H.sub.6 atmosphere.