摘要:
Techniques for analyzing an array of compounds utilizing a high throughput microfluidic system are provided. The system can translate a plurality of multiwell plates through various stations for analysis. Effects to sample compounds can be identified according to deviations in a steady state signal. Also, a user can enter the dwell times for sample compounds and a buffer solution so that the system will alternatingly inject the sample compounds and buffer solution into a microfluidic device according to the specified dwell times.
摘要:
The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
摘要:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
摘要:
Methods for producing Group 10 metal nanostructures are provided. The methods involve novel precursors, novel surfactants, or novel precursor-surfactant combinations. Compositions related to the methods are also featured.
摘要:
Methods and systems for applying nanowires and electrical devices to surfaces are described. In a first aspect, at least one nanowire is provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate the at least one nanowire with the electrodes. The electrode pair is aligned with a region of the destination surface. The at least one nanowire is deposited from the electrode pair to the region. In another aspect, a plurality of electrical devices is provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate an electrical device of the plurality of electrical devices with the electrodes. The electrode pair is aligned with a region of the destination surface. The electrical device is deposited from the electrode pair to the region.
摘要:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
摘要:
Methods and systems for applying nanowires and electrical devices to surfaces are described. In a first aspect, at least one nanowire is provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate the at least one nanowire with the electrodes. The electrode pair is aligned with a region of the destination surface. The at least one nanowire is deposited from the electrode pair to the region. In another aspect, a plurality of electrical devices is provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate an electrical device of the plurality of electrical devices with the electrodes. The electrode pair is aligned with a region of the destination surface. The electrical device is deposited from the electrode pair to the region.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.