摘要:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
摘要:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
摘要:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
摘要:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
摘要:
With reference to a direction perpendicular to a direction of forming electrodes to which a voltage can be applied, fine structures are each arranged within ±5 degrees at a substantially even interval, and a semiconductor element is formed by using the fine structures. On an insulating substrate, at least two electrodes are arranged at a predetermined interval, and there are formed one or more fine structure arranging regions, each of which is formed by a unit of the two electrodes. A semiconductor element electrode is made in contact with the plurality of the fine structures, each having two ends in contact with the two electrodes and a length in a longitudinal direction of a nano order to a micron order, and arranged within ±5 degrees with reference to the direction perpendicular to the direction of forming the electrodes.
摘要:
In a light emitting device, one hundred or more bar-like structured light emitting elements (210) each having a light emitting area of 2,500π μm2 or less are placed on a mounting surface of one insulating substrate (200), so that the light emitting device fulfills little variation in luminance, long life, and high efficiency by dispersion of light emission with suppression of increase in temperatures in light emitting operations.
摘要:
In a light emitting device, a P-type first region (506) and a P-type third region (508) are placed on both sides of an N-type second region (507) of a rod-like light emitting element (505). Therefore, even if connection of the first, third regions (506, 508) of the rod-like light emitting element (505) relative to the first, third electrodes (1, 3) is reversed, a diode polarity relative to the first, third electrodes (501, 503) is not reversed, making it possible to effectuate normal light emission. Thus, a connection of the first, third regions (506, 508) relative to the first, third electrodes (501, 503) may be reversed during a manufacturing process, making it unnecessary to provide marks or configurations for discrimination of orientation of the rod-like light emitting element (505), so that the manufacturing process can be simplified and manufacturing cost can be cut down.
摘要:
A light-emitting element includes a first conductivity type semiconductor base, a plurality of first conductivity type protrusion-shaped semiconductors formed on the semiconductor base, and a second conductivity type semiconductor layer that covers the protrusion-shaped semiconductors.
摘要:
A metal line 731 is formed in a linear area S of an insulative substrate 720, and moreover a metal line 732 is formed generally parallel to the metal line 731 with a specified distance thereto. The metal line 731 is connected to an n-type semiconductor core 701 of bar-like structure light-emitting elements 710A to 710D, and the metal line 732 is connected to a p-type semiconductor layer 702. By dividing the insulative substrate 720 into a plurality of divisional substrates, a plurality of light-emitting devices in each of which a plurality of bar-like structure light-emitting elements 710 are placed on the divisional substrates are formed.
摘要:
This method for disposing fine objects, in a substrate preparing step, prepares a substrate having specified positions where fine objects (120) are to be disposed in an area where a first electrode (111) and a second electrode (112) face each other, and in a fluid introducing step, a fluid (121) is introduced on the substrate (110). The fluid (121) contains a plurality of the fine objects (120). The fine objects (120) are diode elements, each of which has, as an alignment structure, a front side layer (130) composed of a dielectric material, and a rear side layer (131) composed of a semiconductor. In the fine object disposing step, by applying an AC voltage to between the first electrode (111) and the second electrode (112), the fine objects (120) are disposed by dielectrophoresis with the front side layer (130) facing up at the predetermined positions in the area (A) where the first electrode (111) and the second electrode (112) face each other.