Abstract:
A system for fabricating a light emitting device is disclosed. The system contains a growth chamber and at least one nitrogen precursor that is introduced to the growth chamber. The at least one nitrogen precursor has a direct bond between at least one group III atom and at least one nitrogen atom. In addition, the nitrogen precursor is used to fabricate a layer constituting part of an active region of the light emitting device containing indium, gallium, arsenic, and nitrogen, wherein the active region produces light having a wavelength in the range of approximately 1.2 to 1.6 micrometers. A method for fabricating a semiconductor structure is also disclosed. The method comprises providing a substrate and growing over the substrate a layer comprising indium, gallium, arsenic, and nitrogen using at least one nitrogen precursor having a direct bond between at least one group III atom and at least one nitrogen atom.
Abstract:
A method and system for growing a layer of semiconductor material is disclosed. The method can be used to grow a layer of a semiconducting material comprising at least one Group III element, nitrogen and at least one other Group V element as constituent elements thereof, the method comprising providing a reactor and supplying precursors to the reactor. The precursors include a precursor for each of the at least one Group III element, a precursor for the nitrogen, a precursor for each of the at least one Group V element other than nitrogen, and a precursor for an element having a stronger bond strength with nitrogen than each of the at least one Group III element has with nitrogen. The method can be implemented in, for example, a metal organic chemical vapor deposition (MOCVD) reactor.
Abstract:
A red surface emitting laser element includes a first reflector, a second reflector including a p-type semiconductor multilayer film, an active layer between the first reflector and the second reflector, and a p-type semiconductor spacer layer between the active layer and the second reflector, the p-type semiconductor spacer layer having a thickness of 100 nm or more and 350 nm or less.
Abstract:
A surface emitting laser which is configured by laminating on a substrate a lower reflection mirror, an active layer, and an upper reflection mirror, which includes, in a light emitting section of the upper reflection mirror, a structure for controlling reflectance that is configured by a low reflectance region and a concave high reflectance region formed in the central portion of the low reflectance region, and which oscillates at a wavelength of λ, wherein the upper reflection mirror is configured by a multilayer film reflection mirror based on a laminated structure formed by laminating a plurality of layers, the multilayer film reflection mirror includes a phase adjusting layer which has an optical thickness in the range of λ/8 to 3λ/8 inclusive in a light emitting peripheral portion on the multilayer film reflection mirror, and an absorption layer causing band-to-band absorption is provided in the phase adjusting layer.
Abstract:
A light emitting element array including an active layer commonly used for light emitting element regions, carrier injection layers which are electrically isolated from each other and which are provided in the respective light emitting element regions, and a resistive layer which has a resistance higher than that of the carrier injection layers and which is provided between the active layer and the carrier injection layers.
Abstract:
Provided is a process for producing a surface emitting laser including a surface relief structure provided on laminated semiconductor layers, including the steps of transferring, to a first dielectric film, a first pattern for defining a mesa structure and a second pattern for defining the surface relief structure in the same process; and forming a second dielectric film on the first dielectric film and a surface of the laminated semiconductor layers to which the first pattern and the second pattern have been transferred. Accordingly, a center position of the surface relief structure can be aligned with a center position of a current confinement structure at high precision.
Abstract:
A light emitting element array including an active layer commonly used for light emitting element regions, carrier injection layers which are electrically isolated from each other and which are provided in the respective light emitting element regions, and a resistive layer which has a resistance higher than that of the carrier injection layers and which is provided between the active layer and the carrier injection layers.
Abstract:
A vehicle lamp can include a sidelight source that is provided in a headlight reflector and which is close to the front end and close to the outer circumference. A position reflector can be provided that is almost in the form of a ring in an integral or split state at the front end, and close to the outer circumference of the headlight reflector to reflect light from the sidelight source toward the front in a certain direction.
Abstract:
A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
Abstract:
A nitride semiconductor device that comprises a first layer, a second layer and a buffer layer sandwiched between the first layer and the second layer. The second layer is a layer of a single-crystal nitride semiconductor material including AlN and has a thickness greater than the thickness at which cracks would form if the second layer were grown directly on the first layer. The buffer layer is a layer of a low-temperature-deposited nitride semiconductor material that includes AlN. Incorporating the nitride semiconductor device into a semiconductor laser diode enables the laser diode to generate coherent light having a far-field pattern that exhibits a single peak.