摘要:
In a semiconductor device, an organic insulation pattern is disposed between first and second rerouting patterns. The organic insulation pattern may absorb the physical stress that occurs when the first and second rerouting patterns expand under heat. Since the organic insulation pattern is disposed between the first and second rerouting patterns, insulating properties can be increased relative to a semiconductor device in which a semiconductor pattern is disposed between rerouting patterns. Also, since a seed layer pattern is disposed between the first and second rerouting patterns and the organic insulation pattern and between the substrate and the organic insulation pattern, the adhesive strength of the first and second rerouting patterns is enhanced. This also reduces any issues with delamination. Also, the seed layer pattern prevents the metal that forms the rerouting pattern from being diffused to the organic insulation pattern. Therefore, a semiconductor device with enhanced reliability may be implemented.
摘要:
In a semiconductor device, an organic insulation pattern is disposed between first and second rerouting patterns. The organic insulation pattern may absorb the physical stress that occurs when the first and second rerouting patterns expand under heat. Since the organic insulation pattern is disposed between the first and second rerouting patterns, insulating properties can be increased relative to a semiconductor device in which a semiconductor pattern is disposed between rerouting patterns. Also, since a seed layer pattern is disposed between the first and second rerouting patterns and the organic insulation pattern and between the substrate and the organic insulation pattern, the adhesive strength of the first and second rerouting patterns is enhanced. This also reduces any issues with delamination. Also, the seed layer pattern prevents the metal that forms the rerouting pattern from being diffused to the organic insulation pattern. Therefore, a semiconductor device with enhanced reliability may be implemented.
摘要:
In one embodiment, a heterojunction structure includes a first substrate; a second substrate comprising an electrode pad, the second substrate joined to the first substrate by an adhesive layer interposed between the first and second substrates, the first substrate and the adhesive layer having a via hole penetrating therethrough to expose a region of the electrode pad; a connection electrode disposed in the via hole and contacting the electrode pad; and an insulation layer electrically insulating the connection electrode from the first substrate. One of the first and second substrates has a thermal expansion coefficient different than a thermal expansion coefficient of the other of the first and second substrates, and at least one of the adhesive layer or the insulation layer comprises an organic material.
摘要:
A semiconductor apparatus includes a base substrate and a logic chip disposed on the base substrate. The logic chip includes a memory control circuit, a first through silicon via, and a second through silicon via. The memory control circuit is disposed on a first surface of a substrate of the logic chip, and a memory chip is disposed on a second surface of the substrate of the logic chip. The first through silicon via electrically connects the memory control circuit and the memory chip, the second through silicon via is electrically connected to the memory chip and is configured to transmit power for the memory chip, the second through silicon via is electrically insulated from the logic chip, and the first surface of the substrate of the logic chip faces the base substrate.
摘要:
A semiconductor apparatus includes a base substrate and a logic chip disposed on the base substrate. The logic chip includes a memory control circuit, a first through silicon via, and a second through silicon via. The memory control circuit is disposed on a first surface of a substrate of the logic chip, and a memory chip is disposed on a second surface of the substrate of the logic chip. The first through silicon via electrically connects the memory control circuit and the memory chip, the second through silicon via is electrically connected to the memory chip and is configured to transmit power for the memory chip, the second through silicon via is electrically insulated from the logic chip, and the first surface of the substrate of the logic chip faces the base substrate.
摘要:
Provided are a semiconductor package and a method of fabricating the same. In one embodiment, to fabricate a semiconductor package, a wafer having semiconductor chips fabricated therein is provided. A heat sink layer is formed over the wafer. The heat sink layer contacts top surfaces of the semiconductor chips. Thereafter, the plurality of semiconductor chips are singulated from the wafer.
摘要:
Provided are a semiconductor package and a method of fabricating the same. In one embodiment, to fabricate a semiconductor package, a wafer having semiconductor chips fabricated therein is provided. A heat sink layer is formed over the wafer. The heat sink layer contacts top surfaces of the semiconductor chips. Thereafter, the plurality of semiconductor chips are singulated from the wafer.
摘要:
Provided are a semiconductor device including a through via plug and a method of manufacturing the same. In the semiconductor device, since a redistributed interconnection pattern is disposed on a protection film of a convex-concave structure having a protrusion and a recessed portion, the semiconductor device may have improved reliability while preventing a leakage current. In the method of manufacturing the semiconductor device, since an end surface of through via structure is exposed by removing a protection film and an insulating film liner using a selective etching process, damage to the through via structure is minimized, thereby preventing copper contamination in a substrate.
摘要:
Provided are a semiconductor device including a through via plug and a method of manufacturing the same. In the semiconductor device, since a redistributed interconnection pattern is disposed on a protection film of a convex-concave structure having a protrusion and a recessed portion, the semiconductor device may have improved reliability while preventing a leakage current. In the method of manufacturing the semiconductor device, since an end surface of through via structure is exposed by removing a protection film and an insulating film liner using a selective etching process, damage to the through via structure is minimized, thereby preventing copper contamination in a substrate.
摘要:
A semiconductor device includes a substrate having a first side and a second side such that the first and second sides face each other, a through via plug penetrating the substrate, an insulating film liner, and an antipollution film. The insulating film liner is between the through via plug and the substrate and the insulating film liner has a recessed surface with respect to the second side. The antipollution film covers the second side and the antipollution film is on the recessed surface and between the through via plug and the substrate.