摘要:
Methods and systems for use in separating sample materials into different fractions employing pressure-based fluid flow for simultaneous loading of a sample and a reagent into a sample loading channel of a microfluidic device. The sample is loaded from an external source through an attached external sampling capillary. The reagent, which may be a molecular weight standard, a diluent, a detergent, or a labeling reagent, is loaded from a reservoir integral to the microfluidic device via a reagent introduction channel within the device. The sample and reagent form a mixture in the sample loading channel. A portion of the mixture is electrokinetically injected from the sample loading channel, via an injection channel, into a separation channel, where it is separated electrophoretically.
摘要:
Methods and devices for delivering fluids into microfluidic device body structures are described. The methods and devices include the use of fluid manifolds that are integrated or interchangeable with device body structures. Methods of fabricating manifolds are also provided.
摘要:
Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like.
摘要:
This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or material.
摘要:
This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or material.
摘要:
Compositions containing a nanostructure, preferably a nanocrystal, are provided. The nanostructures have ligands bound to the surface. Such ligands are preferably siloxane containing ligands having at least one —COON group, although ligands having various ═P═O groups are also contemplated. The nanostructures can be embedded into a polymer such as a silicone polymer.
摘要翻译:提供了包含纳米结构,优选纳米晶体的组合物。 纳米结构具有与表面结合的配体。 这样的配体优选是具有至少一个-COON基团的含硅氧烷的配位体,尽管也考虑了具有各种= P = O基团的配位体。 纳米结构可以嵌入到聚合物如硅氧烷聚合物中。
摘要:
Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors, as well as us of patterned substrates to grow oriented nanowires. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
摘要:
This invention provides novel capacitors comprising nanofiber enhanced surface area substrates and structures comprising such capacitors, as well as methods and uses for such capacitors.
摘要:
This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, methods for enhancing cellular functions on a surface of a medical device implant are disclosed which generally comprise providing a medical device implant comprising a plurality of nanofibers (e.g., nanowires) thereon and exposing the medical device implant to cells such as osteoblasts.