摘要:
A nonvolatile memory cell includes a substrate comprising a source, drain, and channel between the source and the drain. A tunnel dielectric layer overlies the channel, and a localized charge storage layer is disposed between the tunnel dielectric layer and a control dielectric layer. A gate electrode has a first surface adjacent to the control dielectric layer, and the first surface includes a midsection and two edge portions. According to one embodiment, the midsection defines a plane, and at least one edge portion extends away from the plane. Preferably, the edge portion extending away from the plane converges toward an opposing second surface of the gate electrode. According to another embodiment, the gate electrode of the nonvolatile memory cell includes a first sublayer and a second sublayer of a different width on the first sublayer.
摘要:
A nonvolatile memory cell includes a substrate comprising a source, drain, and channel between the source and the drain. A tunnel dielectric layer overlies the channel, and a localized charge storage layer is disposed between the tunnel dielectric layer and a control dielectric layer. A gate electrode has a first surface adjacent to the control dielectric layer, and the first surface includes a midsection and two edge portions. According to one embodiment, the midsection defines a plane, and at least one edge portion extends away from the plane. Preferably, the edge portion extending away from the plane converges toward an opposing second surface of the gate electrode. According to another embodiment, the gate electrode of the nonvolatile memory cell includes a first sublayer and a second sublayer of a different width on the first sublayer.
摘要:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
摘要:
Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide (Al2O3), hafnium oxide (HfO2), and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multistate (e.g., two, three or four bit) operation.
摘要翻译:描述诸如非易失性存储器件的电子设备的方法和装置。 存储器件包括多层控制电介质,例如双层或三层。 多层控制电介质包括高k电介质材料如氧化铝(Al 2 O 3),氧化铪(HfO 2)和/或铪铝氧化物的混合膜的组合。 多层控制电介质提供增强的特性,包括增加的电荷保留,增强的存储器编程/擦除窗口,改进的可靠性和稳定性,具有单或多(例如二,三或四位)操作的可行性。
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).