摘要:
Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
摘要:
Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
摘要:
A carrier head for chemical mechanical polishing, includes a base, a support structure attached to the base having a surface for contacting a substrate, and a retaining structure attached to the base to prevent the substrate from moving along the surface. The retaining structure and the surface define a cavity for receiving the substrate. The retaining structure includes an upper portion in contact with the base, a lower portion, and a vibration damper separating the upper portion and the lower portion. The vibration damper, the vibration damper includes a material that does not rebound to its original shape when subjected to a deformation.
摘要:
A carrier head for chemical mechanical polishing is described. The carrier head includes a backing assembly, a housing and a damping material. The backing assembly includes a substrate support surface. The housing is connectable to a drive shaft to rotate with the drive shaft about a rotation axis. In one implementation, the damping material is in a load path between the backing assembly and the housing to reduce transmission of vibrations from the backing assembly to the housing.
摘要:
A substrate is chemical mechanical polished with a high-selectivity slurry until the stop layer is at least partially exposed, and then the substrate is polished with a low-selectivity slurry until the stop layer is completely exposed.
摘要:
An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
摘要:
An electroplating apparatus for depositing a metallic layer on a surface of a wafer is provided. In one example, a proximity head capable of being electrically charged as an anode is placed in close proximity to the surface of the wafer. A plating fluid is provided between the wafer and the proximity head to create localized metallic plating.
摘要:
An electroplating head including a chamber having a fluid entrance and a fluid exit is provided. The chamber is configured to contain a flow of electroplating solution from the fluid entrance to the fluid exit. The electroplating head also includes an anode disposed within the chamber. The anode is configured to be electrically connected to a power supply. The electroplating head further includes a porous resistive material disposed at the fluid exit such that the flow of electroplating solution is required to traverse through the porous resistive material.
摘要:
A planarized conductive material is formed over a substrate including narrow and wide features. The conductive material is formed through a succession of deposition processes. A first deposition process forms a first layer of the conductive material that fills the narrow features and at least partially fills the wide features. A second deposition process forms a second layer of the conductive material within cavities in the first layer. A flexible material can reduce a thickness of the first layer above the substrate while delivering a solution to the cavities to form the second layer therein. The flexible material can be a porous membrane attached to a pressurizable reservoir filled with the solution. The flexible material can also be a poromeric material wetted with the solution.
摘要:
A modular semiconductor substrate cleaning system is provided that processes vertically oriented semiconductor substrates. The system features a plurality of cleaning modules that may include a megasonic tank-type cleaner followed by a scrubber. An input module may receive a horizontally oriented substrate and rotate the substrate to a vertical orientation, and an output module may receive a vertically oriented substrate and rotate the substrate to a horizontal orientation. Each of the modules (input, cleaning and output) has a substrate support and may be positioned such that the substrate supports of adjacent modules are equally spaced. The modules are coupled by an overhead transfer mechanism having a plurality of substrate handlers spaced the same distance (X) as the substrate supports of the modules therebelow. The transfer mechanism indexes forward and backward the distance X to simultaneously transport semiconductor substrates through the cleaning system, lifting and lowering substrates from the desired modules wafer rotation/orientation sensors, an input module cart for transporting wafers between a substrate handler of a previous tool (such as a semiconductor substrate polisher) and a substrate handler of the cleaning system are also included.