摘要:
A semiconductor device including: a first gate insulating film which is pattern-formed on an N type well region within a P type semiconductor substrate; a second gate insulating film which is formed on the semiconductor substrate except for this first gate insulating film; a gate electrode, which is formed in such a manner that this gate electrode is bridged over the first gate insulating film and the second gate insulating film; a P type body region which is formed in such a manner that this P type body region is located adjacent to the gate electrode; an N type source region and a channel region, which are formed within this P type body region; and an N type drain region which is formed at a position separated from the P type body region.
摘要:
As conductive patterns 11A to 11D are formed burying in a insulating resin 10 and a conductive foil 20 is formed being half-etched, thickness of the device is made thin. As an electrode for radiation 11D is provided, a semiconductor device superior in radiation is provided.
摘要:
A semiconductor device for a charge pump device suitable for providing large current capacity and preventing a latch up from occurring is offered. An N-type epitaxial silicon layer is formed on a P-type single crystalline silicon substrate, and a P-type well region is formed in the N-type epitaxial silicon layer. A P+-type buried layer abutting on a bottom of the P-type well region and an N+-type buried layer partially overlapping with the P+-type buried layer and electrically isolating the P-type well region from the single crystalline silicon substrate are formed. And then, an MOS transistor is formed in the P-type well region.
摘要:
To enable the reduction of ON-state resistance in a state in which the withstand voltage is secured, a semiconductor device according to the invention is provided with a gate electrode formed so that the gate electrode ranges from a gate oxide film formed on an N-type well region formed in a P-type semiconductor substrate to a selective oxide film, a P-type source region formed so that the source region is adjacent to the gate electrode, a P-type drain region formed in a position apart from the gate electrode and a P-type drift region (an LP layer) formed so that the drift region surrounds the drain region, and is characterized in that a P-type impurities layer (an FP layer) is formed so that the impurities layer is adjacent to the drain region.
摘要:
A heat radiation electrode (15) is exposed from the back surface of an insulating resin (13), and a metal plate (23) is affixed to this heat radiation electrode (15). The back surface of this metal plate (23) and the back surface of a flexible sheet become substantially within a same plane, so that it is readily affixed to a second supporting member (24). In addition, the top surface of the heat radiation electrode (15) is made protrusive beyond the top surfaces of the pads (14) to reduce the distance between the semiconductor chip (16) and the heat radiation electrode (15). Accordingly, the heat generated by the semiconductor chip can be efficiently dissipated via the heat radiation electrode (15), the metal plate (23) and the second supporting member (24).