摘要:
A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
摘要:
A light emitting diode package including a circuit layer, a light-shielding layer, a plurality of light emitting diodes and an encapsulation layer is provided. A thickness of the circuit layer is less than 100 μm. The light-shielding layer is disposed on a first surface of the circuit layer and the light-shielding layer has a plurality of apertures. The light emitting diodes are disposed on the first surface of the circuit layer and in the apertures of the light-shielding layer. The light emitting diodes are electrically connected to the circuit layer. The encapsulation layer covers the light-shielding layer. A refractive index of the encapsulation layer is 1.4 and to 1.7. The Young's modulus of the encapsulation layer is larger than or equal to 1 GPa. A thickness of the encapsulation layer is greater than thicknesses of the light emitting diodes.
摘要:
A semiconductor laser structure is provided. The semiconductor laser comprises a central thermal shunt, a ring shaped silicon waveguide, a contiguous thermal shunt, an adhesive layer and a laser element. The central thermal shunt is located on a SOI substrate which has a buried oxide layer surrounding the central thermal shunt. The ring shaped silicon waveguide is located on the buried oxide layer and surrounds the central thermal shunt. The ring shaped silicon waveguide includes a P-N junction of a p-type material portion, an n-type material portion and a depletion region there between. The contiguous thermal shunt covers a portion of the buried oxide layer and surrounds the ring shaped silicon waveguide. The adhesive layer covers the ring shaped silicon waveguide and the buried oxide layer. The laser element covers the central thermal shunt, the adhesive layer and the contiguous thermal shunt.
摘要:
A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
摘要:
A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
摘要:
A light-emitting device including an epitaxial layer, a support layer, an insulating layer, a first electrode pad, and a second electrode pad is provided. The epitaxial layer includes a first type doped semiconductor layer, a light-emitting layer and a second type doped semiconductor layer, wherein the light-emitting layer is disposed on a partial area of the first type doped semiconductor layer and is between the first type doped semiconductor layer and the second type doped semiconductor layer. The support layer covers the second type doped semiconductor layer while the insulating layer covers the epitaxial layer and the support layer. The first and the second electrode pads are disposed over the insulating layer and electrically connected to the first and the second type doped semiconductor layers, respectively. The support layer extends from a first position below the first electrode pad to a second position below the second electrode pad.
摘要:
A semiconductor laser structure is provided. The semiconductor laser comprises a central thermal shunt, a ring shaped silicon waveguide, a contiguous thermal shunt, an adhesive layer and a laser element. The central thermal shunt is located on a SOI substrate which has a buried oxide layer surrounding the central thermal shunt. The ring shaped silicon waveguide is located on the buried oxide layer and surrounds the central thermal shunt. The ring shaped silicon waveguide includes a P-N junction of a p-type material portion, an n-type material portion and a depletion region there between. The contiguous thermal shunt covers a portion of the buried oxide layer and surrounds the ring shaped silicon waveguide. The adhesive layer covers the ring shaped silicon waveguide and the buried oxide layer. The laser element covers the central thermal shunt, the adhesive layer and the contiguous thermal shunt.
摘要:
A semiconductor laser structure is provided. The semiconductor laser comprises a central thermal shunt, a ring shaped silicon waveguide, a contiguous thermal shunt, an adhesive layer and a laser element. The central thermal shunt is located on a SOI substrate which has a buried oxide layer surrounding the central thermal shunt. The ring shaped silicon waveguide is located on the buried oxide layer and surrounds the central thermal shunt. The ring shaped silicon waveguide includes a P-N junction of a p-type material portion, an n-type material portion and a depletion region there between. The contiguous thermal shunt covers a portion of the buried oxide layer and surrounds the ring shaped silicon waveguide. The adhesive layer covers the ring shaped silicon waveguide and the buried oxide layer. The laser element covers the central thermal shunt, the adhesive layer and the contiguous thermal shunt.
摘要:
A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
摘要:
A light-emitting device including an epitaxial layer, a support layer, an insulating layer, a first electrode pad, and a second electrode pad is provided. The epitaxial layer includes a first type doped semiconductor layer, a light-emitting layer and a second type doped semiconductor layer, wherein the light-emitting layer is disposed on a partial area of the first type doped semiconductor layer and is between the first type doped semiconductor layer and the second type doped semiconductor layer. The support layer covers the second type doped semiconductor layer while the insulating layer covers the epitaxial layer and the support layer. The first and the second electrode pads are disposed over the insulating layer and electrically connected to the first and the second type doped semiconductor layers, respectively. The support layer extends from a first position below the first electrode pad to a second position below the second electrode pad.