摘要:
A metal-oxide-semiconductor field effect transistor (MOSFET) and a method of fabricating a MOSFET are described. The method includes depositing and patterning a dummy gate stack above an active channel layer formed on a base. The method also includes selectively etching the active channel layer leaving a remaining active channel layer, and epitaxially growing silicon doped active channel material adjacent to the remaining active channel layer.
摘要:
A semiconductor device having an n channel MISFET formed on an SOI substrate including a support substrate, an insulating layer formed on the support substrate and a silicon layer formed on the insulating layer has the following structure. An impurity region for threshold adjustment is provided in the support substrate of a gate electrode so that the silicon layer contains carbon. The threshold value can be adjusted by the semiconductor region for threshold adjustment in this manner. Further, by providing the silicon layer containing carbon, even when the impurity of the semiconductor region for threshold adjustment is diffused to the silicon layer across the insulating layer, the impurity is inactivated by the carbon implanted into the silicon layer. As a result, the fluctuation of the transistor characteristics, for example, the fluctuation of the threshold voltage of the MISFET can be reduced.
摘要:
A metal-oxide-semiconductor field effect transistor (MOSFET) and a method of fabricating a MOSFET are described. The method includes depositing and patterning a dummy gate stack above an active channel layer formed on a base. The method also includes selectively etching the active channel layer leaving a remaining active channel layer, and epitaxially growing silicon doped active channel material adjacent to the remaining active channel layer.
摘要:
It is an object of the present invention to stably form an N-doped ZnO-based compound thin film. In the present invention, a gas containing oxygen and nitrogen and a nitrogen gas together with an organometallic material gas are supplied into a low-electron-temperature high-density plasma which is excited by microwave, thereby forming the N-doped ZnO-based compound thin film on a substrate as a film forming object.
摘要:
Provided is an apparatus for manufacturing a compound semiconductor by use of metal organic chemical vapor deposition including: a reaction container; a holder on which a formed body is to be placed so that a formed surface of the formed body on which layers of a compound semiconductor are to be formed faces upward, the holder being arranged in the reaction container; and a material supply port supplying a material gas of the compound semiconductor into the reaction container from outside, wherein the holder includes a support member supporting the formed body so that an undersurface of the formed body and a top surface of the holder on which the formed body is to be placed keep a predetermined distance.
摘要:
A phase change material including a high adhesion phase change material formed on a dielectric material and a low adhesion phase change material formed on the high adhesion phase change material. The high adhesion phase change material includes a greater amount of at least one of nitrogen and oxygen than the low adhesion phase change material. The phase change material is produced by forming a first chalcogenide compound material including an amount of at least one of nitrogen and oxygen on the dielectric material and forming a second chalcogenide compound including a lower percentage of at least one of nitrogen and oxygen on the first chalcogenide compound material. A phase change random access memory device, and a semiconductor structure are also disclosed.
摘要:
A method of synthesizing electronic components incorporating nanoscale filamentary structures in which method a metallic catalyst is deposited in a nanoporous membrane , the catalyst being adapted to penetrate in at least some of the pores of the nanoporous membrane , and filamentary structures are grown on the catalyst in at least some of the pores in the nanoporous membrane . The nanoporous membrane is prepared in a manner suitable for ensuring that the wall of the pores include a single-crystal zone, and at least part of the catalyst is grown epitaxially on said single-crystal zone.
摘要:
Hybrid chemical vapor deposition systems for depositing a semiconductor-containing thin film over a substrate comprise a reaction space, a substrate support member configured to permit movement of a substrate in a longitudinal direction and a plasma-generating apparatus disposed in the reaction space and configured to form plasma-excited species of a vapor phase chemical. The systems further comprise a hot wire unit disposed in the reaction space and configured to heat and decompose a vapor phase chemical. The hot wire unit can be a filament. The systems can further comprise an additional reaction space proximate the reaction space. The additional reaction space can comprise a plasma-generating apparatus configured to form plasma-excited species of a vapor phase chemical and a hot wire unit configured to heat and decompose a vapor phase chemical.
摘要:
In accordance with aspects of the invention, a method of forming a memory cell is provided, the method including forming a steering element above a substrate, and forming a memory element coupled to the steering element, wherein the memory element comprises a carbon-based material having a thickness of not more than ten atomic layers. The memory element may be formed by repeatedly performing the following steps: forming a layer of a carbon-based material, the layer having a thickness of about one monolayer, and subjecting the layer of carbon-based material to a thermal anneal. Other aspects are also described.
摘要:
Raw materials are economized and a film deposition rate is improved while maintaining film evenness and high film quality.A film deposition apparatus for the continuous formation of a multilayered transparent conductive film is provided which comprises a substrate attachment part, a charging part where evacuation is conducted, a multilayer deposition treatment part comprising two or more deposition treatment parts for forming a transparent conductive film on a substrate by the MOCVD method by reacting an organometallic compound (diethylzinc), diborane, and water in a vapor phase, a substrate takeout part, a substrate detachment part, and a setter return part where the substrate setter is returned to the substrate attachment part. Film deposition is successively conducted while moving a substrate sequentially through the parts to form a multilayered transparent conductive film on the substrate. Each deposition treatment part is equipped with nozzles for spraying the organometallic compound, diborane, and water and with a cooling mechanism for cooling the nozzles.