摘要:
A method for making a tri-gate FinFET and a dual-gate FinFET includes providing a semiconductor on insulator (SOI) wafer having a semiconductor layer over an insulator layer. The method further includes forming a hard mask on the semiconductor layer and patterning the hard mask to form first and second cap portions. The method also includes etching the semiconductor layer to form first and second fins using the first and second cap portions as an etch mask. The method also includes removing the second cap portion to expose the top surface of the second fin and forming a gate dielectric layer on the first and second fins. The method further includes forming a conductive layer over the gate dielectric layer, selectively etching the conductive layer to form first and second gate structures, forming an interlayer dielectric layer over the gate structures, and planarizing the interlayer dielectric layer using the first cap portion as a polish stop.
摘要:
A semiconductor structure includes a semiconductor device, a first seal ring, a second seal ring, and a plurality of through semiconductor vias (TSV). The semiconductor device has a first surface and a second surface opposite to the first surface. The first seal ring is disposed on the first surface of the semiconductor device and is adjacent to edges of the first surface. The second seal ring is disposed on the second surface of the semiconductor device and is adjacent to edges of the second surface. The TSVs penetrate through the semiconductor device and physically connect the first seal ring and the second seal ring.
摘要:
A semiconductor light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, sequentially stacked on a substrate along a first direction, and including an exposed region exposing the first conductivity-type semiconductor layer. A first contact electrode is in the exposed region, a second contact electrode is on the second conductivity-type semiconductor layer, and an insulating layer covers the light emitting structure. Separate electrode pads penetrate the insulating layer to be electrically connected to the first contact electrode and the second contact electrode. A side surface of at least one of the first and second electrode pads may extend to be coplanar with a side surface of the substrate along the first direction.
摘要:
The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
摘要:
The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
摘要:
Consistent with an example embodiment, there is a semiconductor device, with an active device having a front-side surface and a backside surface; the semiconductor device of an overall thickness, comprises an active device with circuitry defined on the front-side surface, the front-side surface having an area. The back-side of the active device has recesses f a partial depth of the active device thickness and a width of about the partial depth, the recesses surrounding the active device at vertical edges. There is a protective layer of a thickness on to the backside surface of the active device, the protective material having an area greater than the first area and having a stand-off distance. The vertical edges have the protective layer filling the recesses flush with the vertical edges. A stand-off distance of the protective material is a function of the semiconductor device thickness and the tangent of an angle (θ) of tooling impact upon a vertical face the semiconductor device.
摘要:
Methods and systems for monolithic integration of photonics and electronics in CMOS processes are disclosed and may include fabricating photonic and electronic devices on two CMOS wafers with different silicon layer thicknesses for the photonic and electronic devices with at least a portion of each of the wafers bonded together, where a first of the CMOS wafers includes the photonic devices and a second of the CMOS wafers includes the electronic devices. The electrical devices may be coupled to optical devices utilizing through-silicon vias. The different thicknesses may be fabricated utilizing a selective area growth process. Cladding layers may be fabricated utilizing oxygen implants and/or utilizing CMOS trench oxide on the CMOS wafers. Silicon may be deposited on the CMOS trench oxide utilizing epitaxial lateral overgrowth. Cladding layers may be fabricated utilizing selective backside etching. Reflective surfaces may be fabricated by depositing metal on the selectively etched regions.
摘要:
Consistent with an example embodiment, there is a method for assembling a wafer level chip scale processed (WLCSP) wafer; The wafer has a topside surface and an back-side surface, and a plurality of device die having electrical contacts on the topside surface. The method comprises back-grinding, to a thickness, the back-side surface the wafer. A protective layer of a thickness is molded onto the backside of the wafer. The wafer is mounted onto a sawing foil; along saw lanes of the plurality of device die, the wafer is sawed, the sawing occurring with a blade of a first kerf and to a depth of the thickness of the back-ground wafer. Again, the wafer is sawed along the saw lanes of the plurality of device die, the sawing occurring with a blade of a second kerf, the second kerf narrower than the first kerf, and sawing to a depth of the thickness of the protective layer. The plurality of device die are separated into individual device die. Each individual device die has a protective layer on the back-side, the protective layer having a stand-off distance from a vertical edge of the individual device die.
摘要:
Consistent with an example embodiment, there is a semiconductor device, with an active device having a front-side surface and a backside surface; the semiconductor device of an overall thickness, comprises an active device with circuitry defined on the front-side surface, the front-side surface having an area. The back-side of the active device has recesses f a partial depth of the active device thickness and a width of about the partial depth, the recesses surrounding the active device at vertical edges. There is a protective layer of a thickness on to the backside surface of the active device, the protective material having an area greater than the first area and having a stand-off distance. The vertical edges have the protective layer filling the recesses flush with the vertical edges. A stand-off distance of the protective material is a function of the semiconductor device thickness and the tangent of an angle (θ) of tooling impact upon a vertical face the semiconductor device.
摘要:
Ineffective chips are formed in the circumference of a semiconductor wafer and effective chips are formed in a region surrounded by the ineffective chips. Dicing lines partition the effective chips and the ineffective chips. Polyimide is formed on an outer circumferential portion of the semiconductor wafer with a predetermined width from an outer circumferential end of the semiconductor wafer such that the polyimide continuously covers the ineffective chips from the outer circumferential end of the semiconductor wafer to the inside and continuously covers a portion which is a predetermined distance away from the outer circumferential end of the semiconductor wafer to the effective chip in the dicing line interposed between the ineffective chips. A metal film is formed on the front electrode formed on the effective chips by plating. The semiconductor wafer is cut into semiconductor chips along the dicing lines by a blade.