Abstract:
An apparatus is provided which comprises: a substrate, a die site on the substrate to couple with a die, a die side component site on the substrate to couple with a die side component, and a raised barrier on the substrate between the die and die side component sites to contain underfill material disposed at the die site, wherein the raised barrier comprises electroplated metal. Other embodiments are also disclosed and claimed.
Abstract:
A surface finish may be formed in a microelectronic structure, wherein the surface finish may include a multilayer interlayer structure. Thus, needed characteristics, such as compliance and electro-migration resistance, of the interlayer structure may be satisfied by different material layers, rather attempting to achieve these characteristics with a single layer. In one embodiment, the multilayer interlayer structure may comprises a two-layer structure, wherein a first layer is formed proximate a solder interconnect and comprises a material which forms a ductile joint with the solder interconnect, and a second layer comprising a material having strong electro-migration resistance formed between the first layer and an interconnection pad. In a further embodiment, third layer may be formed adjacent the interconnection pad comprising a material which forms a ductile joint with the interconnection pad.
Abstract:
Techniques for fabricating a semiconductor package having magnetic materials embedded therein are described. For one technique, fabrication of package includes: forming a pad and a conductive line on a build-up layer; forming a raised pad structure on the build-up layer, the raised pad comprising a pillar structure on the pad; encapsulating the conductive line and the raised pad structure in a magnetic film comprising one or more magnetic fillers; planarizing a top surface of the magnetic film until top surfaces of the raised pad structure and the magnetic film are co-planar; depositing a primer layer on the top surfaces; removing one or more portions of the primer layer above the raised pad structure to create an opening; and forming a via in the opening on the raised pad structure.
Abstract:
Described herein are magnetic core inductors (MCI) and methods for manufacturing magnetic core inductors. A first embodiment of the MCI can be a snake-configuration MCI. The snake-configuration MCI can be formed by creating an opening in a base material, such as copper, and providing a nonconductive magnetic material in the opening. The inductor can be further formed by forming plated through holes into the core material. The conductive elements for the inductor can be formed in the plated through holes. The nonconductive magnetic material surrounds each conductive element and plated through hole. In embodiments, a layered coil inductor can be formed by drilling a laminate to form a cavity through the laminate within the metal rings of the layered coil inductor. The nonconductive magnetic material can be provided in the cavity.
Abstract:
Semiconductor packages having a first layer interconnect portion that includes a coaxial interconnect between a die and a package substrate are described. In an example, the package substrate includes a substrate-side coaxial interconnect electrically connected to a signal line. The die is mounted on the package substrate and includes a die-side coaxial interconnect coupled to the substrate-side coaxial interconnect. The coaxial interconnects can be joined by a solder bond between respective central conductors and shield conductors.
Abstract:
Techniques and mechanisms for providing effective connectivity with surface level microbumps on an integrated circuit package substrate. In an embodiment, different metals are variously electroplated to form a microbump which extends through a surface-level dielectric of a substrate to a seed layer including copper. The microbump includes nickel and tin, wherein the nickel aids in mitigating an absorption of seed layer copper. In another embodiment, the microbump has a mass fraction of tin, or a mass fraction of nickel, that is different in various regions along a height of the microbump.
Abstract:
Some example forms relate to an electronic package. The electronic package includes a first dielectric layer that includes an electrical trace formed on a surface of the first dielectric layer and a second dielectric layer on the surface of the first dielectric layer. The second dielectric layer includes an opening. The electrical trace is within the opening. The electronic package includes an electrical interconnect that fills the opening and extends above an upper surface of the second dielectric layer such that the electrically interconnect is electrically connected to the electrical trace on the first dielectric layer.
Abstract:
Methods of forming sensor integrated package devices and structures formed thereby are described. An embodiment includes providing a substrate core, wherein a first conductive trace structure and a second conductive trace structure are disposed on the substrate core, forming a cavity between the first conductive trace structure and the second conductive trace structure, and placing a magnet on a resist material disposed on a portion of each of the first and second conductive trace structures, wherein the resist material does not extend over the cavity.
Abstract:
Package substrates enabling reduced bump pitches and package assemblies thereof. Surface-level metal features are embedded in a surface-level dielectric layer with surface finish protruding from a top surface of the surface-level dielectric for assembly, without solder resist, to an IC chip having soldered connection points. Package substrates are fabricated to enable multiple levels of trace routing with each trace routing level capable of reduced minimum trace width and spacing.
Abstract:
Disclosed embodiments include an embedded thin-film capacitor and a magnetic inductor that are assembled in two adjacent build-up layers of a semiconductor package substrate. The thin-film capacitor is seated on a surface of a first of the build-up layers and the magnetic inductor is partially disposed in a recess in the adjacent build up layer. The embedded thin-film capacitor and the integral magnetic inductor are configured within a die shadow that is on a die side of the semiconductor package substrate.