摘要:
An apparatus and method for manufacturing photoelectric conversion elements, and a photoelectric conversion element, the apparatus and method being capable of highly efficiently forming a film at a high speed with microwave plasma, preventing oxygen from mixing, and reducing the number of defects. The invention provides a photoelectric conversion element manufacturing apparatus 100 that forms a semiconductor stack film on a substrate by using microwave plasma CVD. The apparatus includes a chamber 10 which is a enclosed space containing a base, on which the a subject substrate for thin-film formation is mounted, a first gas supply unit 40 which supplies plasma excitation gas to a plasma excitation region in the chamber 10, a pressure regulation unit 70 which regulates pressure in the chamber 10, a second gas supply unit 50 which supplies raw gas to a plasma diffusion region in the chamber 10, a microwave application unit 20 which applies microwaves into the chamber 10, and a bias voltage application unit 60 which selects and applies a substrate bias voltage to the substrate W according to the type of gas.
摘要:
When positively charged ions are implanted into a target substrate, charge-up damage may occur on the target substrate. In order to suppress charge-up caused by secondary electrons emitted from the target substrate when positively charged ions are implanted, a conductive member is installed at a position facing the target substrate and electrically grounded with respect to a high frequency. Further, a field intensity generated in the target substrate may be reduced by controlling an RF power applied to the target substrate in pulse mode.
摘要:
A dielectric film wherein N in the state of an Si3=≡N bonding is present in a concentration of 3 atomic % or more in the surface side of an oxide film and also is present in a concentration of 0.1 atomic % or less in the interface side of the oxide film can achieve the prevention of the B diffusion and also the prevention of the deterioration of the NBTI resistance in combination. When the Ar/N2 radical nitridation is used, it is difficult for the resultant oxide film to satisfy the condition wherein N in the above bonding state is present in a concentration of 3 atomic % or more in the surface side of an oxide film and simultaneously is present in a concentration of 0.1 atomic % or less in the interface side of the oxide film, whereas, the above distribution of the N concentration can be achieved by using any of the gas combinations of Xe/N2, Kr/N2, Ar/NH3, Xe/NH3, Kr/NH3, Ar/N2/H2, Xe/N2/H2 and Kr/N2/H2.
摘要翻译:在氧化物膜的表面侧以3原子%以上的浓度存在Si 3 N 3≡N键的状态下的N的电介质膜,其浓度为 在氧化膜的界面侧为0.1原子%以下,可以防止B扩散,并且可以防止NBTI电阻的组合劣化。 当使用Ar / N 2自由基氮化时,所得到的氧化物膜难以满足在上述接合状态下的N以3原子%以上的浓度存在的条件 氧化膜的表面侧,同时在氧化膜的界面侧以0.1原子%以下的浓度存在,而N浓度的上述分布可以通过使用Xe / N / 2,Kr / N 2,Ar / NH 3,Xe / NH 3,Kr / NH 2, 2/3/2/2/2/2/2/2 和Kr / N 2 H 2 / H 2。
摘要:
When positively charged ions are implanted into a target substrate, charge-up damage may occur on the target substrate. In order to suppress charge-up caused by secondary electrons emitted from the target substrate when positively charged ions are implanted, a conductive member is installed at a position facing the target substrate and electrically grounded with respect to a high frequency. Further, a field intensity generated in the target substrate may be reduced by controlling an RF power applied to the target substrate in pulse mode.
摘要:
A method for fabricating a semiconductor device including GaN (gallium nitride) that composes a semiconductor layer and includes forming a gate insulating film, in which at least one film selected from the group of a SiO2 film and an Al2O3 film is formed on a nitride layer containing GaN by using microwave plasma and the formed film is used as at least a part of the gate insulating film.
摘要翻译:一种制造半导体器件的方法,该半导体器件包括构成半导体层并包括形成栅极绝缘膜的GaN(氮化镓),其中在氮化物层上形成选自SiO 2膜和Al 2 O 3膜中的至少一种膜 通过使用微波等离子体形成含GaN的GaN,并且将形成的膜用作栅极绝缘膜的至少一部分。
摘要:
On a surface of a semiconductor substrate, a plurality of terraces formed stepwise by an atomic step are formed in the substantially same direction. Using the semiconductor substrate, a MOS transistor is formed so that no step exists in a carrier traveling direction (source-drain direction).
摘要:
In a semiconductor device, the degree of flatness of 0.3 nm or less in terms of a peak-to-valley (P-V) value is realized by rinsing a silicon surface with hydrogen-added ultrapure water in a light-screened state and in a nitrogen atmosphere and a contact resistance of 10−11 Ωcm2 or less is realized by setting a work function difference of 0.2 eV or less between an electrode and the silicon. Thus, the semiconductor device can operate on a frequency of 10 GHz or higher.
摘要:
A plasma processing apparatus in which consumption of expensive krypton and xenon gases is suppressed as much as possible while reducing damage on a workpiece during plasma processing. In plasma processing of a substrate using a rare gas, two or more kinds of different rare gases are employed, and an inexpensive argon gas is used as one rare gas and any one or both of krypton and xenon gases having a larger collision cross-sectional area against electron than that of the argon gas is used as the other gas. Consequently, consumption of expensive krypton and xenon gases is suppressed as much as possible and damage on a workpiece is reduced during plasma processing.
摘要:
An accumulation mode transistor has an impurity concentration of a semiconductor layer in a channel region at a value higher than 2×1017 cm−3 to achieve a large gate voltage swing.
摘要:
By hydrogen-terminating a semiconductor surface using a solution containing HF2− ions and an oxidant, the hydrogen termination can be quickly carried out. In this case, the semiconductor surface is silicon having a (111) surface, a (110) surface, or a (551) surface.