摘要:
A method of forming a capacitive core structure and of forming a circuitized printed wiring board from the core structure and the resulting structures are provided. The capacitive core structure is formed by providing a central conducting plane of a sheet of conductive material and forming at least one clearance hole in the central conducting plane. First and second external conducting planes are laminated to opposite sides of the ground plane with a film of dielectric material between each of the first and second external planes and the central conducting plane. At least one clearance hole is formed in each of the first and second external planes. A circuitized wiring board structure can be formed by laminating a capacitive core structure between two circuitized structures. The invention also relates to the structures formed by these methods.
摘要:
A method is provided for producing a capacitor to be embedded in an electronic circuit package comprising the steps of selecting a first conductor foil, selecting a dielectric material, coating the dielectric material on at least one side of the first conductor foil, and layering the coated foil with a second conductor foil on top of the coating of dielectric material. Also claimed is an electronic circuit package incorporating at least one embedded capacitor manufactured in accordance with the present invention.
摘要:
Disclosed is a multilayer circuit package having a buried thin film capacitor. The circuit package includes at least a power core, a ground core, a first signal core, a second signal core, and the integral, buried, thin film capacitor. The integral, buried, thin film capacitor serves to capacitively couple the first and second signal cores. Structurally, the first signal core includes at least one first wire that terminates in at least one first electrode, while the second signal core includes at least one second wire that terminates in at least one second electrode. At least a portion of the first electrode overlays at least a portion of the first electrode overlays at least a portion of the second electrode and is separated therefrom by a thin film of a dielectric material. The first electrode, the second electrode, and the thin film of dielectric material define the integral buried capacitor. The thin film capacitor is prepared by thin film methodology, with epitaxial deposition of the dielectric.
摘要:
A method of making a circuitized substrate including a resistor comprised of material which includes a polymer resin and a quantity of nano-powders including a mixture of at least one metal component and at least one ceramic component. The ceramic component may be a ferroelectric ceramic and/or a high surface area ceramic and/or a transparent oxide and/or a dope manganite. Alternatively, the material will include the polymer resin and nano-powders, with the nano-powders comprising at least one metal coated ceramic and/or at least one oxide coated metal component. An electrical assembly (substrate and at least one electrical component) and an information handling system (e.g., personal computer) utilizing such a circuitized substrate are also provided.
摘要:
A multi-layer imbedded capacitance and resistance substrate core. At least one layer of resistance material is provided. The layer of resistance material has a layer of electrically conductive material embedded therein. At least one layer of capacitance material of high dielectric constant is disposed on the layer of resistance material. Thru-holes are formed by laser.
摘要:
A method of making a circuitized substrate which involves forming a plurality of individual film resistors having approximate resistance values as part of at least one circuit of the substrate, measuring the resistance of a representative (sample) resistor to define its resistance, utilizing these measurements to determine the corresponding precise width of other, remaining film resistors located in a defined proximity relative to the representative resistor such that these remaining film resistors will include a defined resistance value, and then selectively isolating defined portions of the resistive material of these remaining film resistors while simultaneously defining the precise width of the resistive material in order that these film resistors will possess the defined resistance.
摘要:
A method of making a circuitized substrate including a resistor comprised of material which includes a polymer resin and a quantity of nano-powders including a mixture of at least one metal component and at least one ceramic component. The ceramic component may be a ferroelectric ceramic and/or a high surface area ceramic and/or a transparent oxide and/or a dope manganite. Alternatively, the material will include the polymer resin and nano-powders, with the nano-powders comprising at least one metal coated ceramic and/or at least one oxide coated metal component. An electrical assembly (substrate and at least one electrical component) and an information handling system (e.g., personal computer) utilizing such a circuitized substrate are also provided.
摘要:
A method and structure relating to multisegmented plated through holes. A substrate includes a dielectric layer sandwiched between a first laminate layer and a second laminate layer. A through hole is formed through the substrate. The through hole passes through nonplatable dielectric material within the dielectric layer. As a result, subsequent seeding and electroplating of the through hole results in a conductive metal plating forming at a wall of the through hole on a segment of the first laminate layer and on a segment of the second laminate layer, but not on the nonplatable dielectric material of the dielectric layer. Thus, the conductive metal plating is not continuous from the first laminate layer to the second laminate layer.
摘要:
The present invention is a persulfate microetchant composition especially useful for removing impurities from copper surfaces during fabrication of microelectronic packages. The microetchant formulation is characterized by its ability to selectively clean copper in the presence of nickel, nickel-phosphorous and noble metal alloys therefrom. Furthermore, no deleterious galvanic etching occurs in this microetchant-substrate system so that substantially no undercutting of the copper occurs. The combination of high selectivity and no undercutting allows for a simplification of the microelectronic fabrication process and significant improvements in the design features of the microelectronic package, in particular higher density circuits. The persulfate microetchant composition is stabilized with acid and phosphate salts to provide a process that is stable, fast acting, environmentally acceptable, has high capacity, and can be performed at room temperature. A preferred etchant composition is 100 gm/liter sodium persulfate, 3 volume % phosphoric acid and 0.058 molar sodium phosphate dibasic.
摘要:
An epoxy based resin which exhibits good laser ablation and good adherence to a substrate such a copper is provided by adding to the resin a dye or dyes having substantial energy absorption at the emission wave lengths of lasers used to laser ablate the resin. The resin with the dye or dyes included is coated onto a substrate and cured, or laminated onto a substrate in the cured condition. The required openings are formed in the cured film by laser ablation. This allows for the use of optimum techniques to be used to form micro vias.