Abstract:
A system for inspecting a sample including a detector, either a photomultiplier tube or an electron-bombarded image sensor, that is positioned to receive light from the sample. The detector includes a semiconductor photocathode and a photodiode. Notably, the photodiode includes a p-doped semiconductor layer, an n-doped semiconductor layer formed on a first surface of the p-doped semiconductor layer to form a diode, and a pure boron layer formed on a second surface of the p-doped semiconductor layer. The semiconductor photocathode includes silicon, and further includes a pure boron coating on at least one surface.
Abstract:
Improved inspection systems utilize laser systems and associated techniques to generate an ultra-violet (UV) wavelength of approximately 193.368 nm from a fundamental vacuum wavelength near 1063.5 nm. Preferred embodiments separate out an unconsumed portion of an input wavelength to at least one stage and redirect that unconsumed portion for use in another stage. The improved laser systems and associated techniques result in less expensive, longer life lasers than those currently being used in the industry. These laser systems can be constructed with readily-available, relatively inexpensive components.
Abstract:
Determination of one or more optical characteristics of a structure of a semiconductor wafer includes measuring one or more optical signals from one or more structures of a sample, determining a background optical field associated with a reference structure having a selected set of nominal characteristics based on the one or more structures, determining a correction optical field suitable for at least partially correcting the background field, wherein a difference between the measured one or more optical signals and a signal associated with a sum of the correction optical field and the background optical field is below a selected tolerance level, and extracting one or more characteristics associated with the one or more structures utilizing the correction optical field.
Abstract:
A pulsed UV laser assembly includes a partial reflector or beam splitter that divides each fundamental pulse into two sub-pulses and directs one sub-pulse to one end of a Bragg grating and the other pulse to the other end of the Bragg grating (or another Bragg grating) such that both sub-pulses are stretched and receive opposing (positive and negative) frequency chirps. The two stretched sub-pulses are combined to generate sum frequency light having a narrower bandwidth than could be obtained by second-harmonic generation directly from the fundamental. UV wavelengths may be generated directly from the sum frequency light or from a harmonic conversion scheme incorporating the sum frequency light. The UV laser may further incorporate other bandwidth reducing schemes. The pulsed UV laser may be used in an inspection or metrology system.
Abstract:
The present invention includes an interposer disposed on a surface of a substrate, a light sensing array sensor disposed on the interposer, the light sensing array sensor being back-thinned and configured for back illumination, the light sensing array sensor including columns of pixels, one or more amplification circuitry elements configured to amplify an output of the light sensing array sensor, the amplification circuits being operatively connected to the interposer, one or more analog-to-digital conversion circuitry elements configured to convert an output of the light sensing array sensor to a digital signal, the ADC circuitry elements being operatively connected to the interposer, one or more driver circuitry elements configured to drive a clock or control signal of the array sensor, the interposer configured to electrically couple at least two of the light sensing array sensor, the amplification circuits, the conversion circuits, the driver circuits, or one or more additional circuits.
Abstract:
A scanning electron microscope incorporates a multi-pixel solid-state electron detector. The multi-pixel solid-state detector may detect back-scattered and/or secondary electrons. The multi-pixel solid-state detector may incorporate analog-to-digital converters and other circuits. The multi-pixel solid state detector may be capable of approximately determining the energy of incident electrons and/or may contain circuits for processing or analyzing the electron signals. The multi-pixel solid state detector is suitable for high-speed operation such as at a speed of about 100 MHz or higher. The scanning electron microscope may be used for reviewing, inspecting or measuring a sample such an unpatterned semiconductor wafer, a patterned semiconductor wafer, a reticle or a photomask. A method of reviewing or inspecting a sample is also described.
Abstract:
An image sensor for short-wavelength light includes a semiconductor membrane, circuit elements formed on one surface of the semiconductor membrane, and a pure boron layer on the other surface of the semiconductor membrane. An anti-reflection or protective layer is formed on top of the pure boron layer. This image sensor has high efficiency and good stability even under continuous use at high flux for multiple years. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor.
Abstract:
Various metrology systems and methods are provided. One metrology system includes a light source configured to produce a diffraction-limited light beam, an apodizer configured to shape the light beam in the entrance pupil of illumination optics, and optical elements configured to direct the diffraction-limited light beam from the apodizer to an illumination spot on a grating target on a wafer and to collect scattered light from the grating target. The metrology system further includes a field stop and a detector configured to detect the scattered light that passes through the field stop. In addition, the metrology system includes a computer system configured to determine a characteristic of the grating target using output of the detector.
Abstract:
An optical system for detecting contaminants and defects on a test surface includes an improved laser system for generating a laser beam and optics directing the laser beam along a path onto the test surface, and producing an illuminated spot thereon. A detector and ellipsoidal mirrored surface are also provided with an axis of symmetry about a line perpendicular to the test surface. In one embodiment, an optical system for detecting anomalies of a sample includes the improved laser system for generating first and second beams, first optics for directing the first beam of radiation onto a first spot on the sample, second optics for directing the second beam onto a second spot on the sample, with the first and second paths at different angles of incidence to the sample surface. In another embodiment, a surface inspection apparatus includes an illumination system configured to focus beams at non-normal incidence angles.
Abstract:
A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects, and a low work-function material layer is then formed over the boron layer to enhance the emission of photoelectrons. The low work-function material includes an alkali metal (e.g., cesium) or an alkali metal oxide. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel sensors and inspection systems.