Abstract:
A CO2 sorbent capable of efficiently sorbing carbon dioxide is provided. A CO2 sorbent for sorbing and separating carbon dioxide from a gas containing carbon dioxide contains a Ce oxide and having an average pore size of 60 Å or less.
Abstract:
Sorbent bodies comprising activated carbon, processes for making them, and methods of using them. The sorbent bodies can be used to remove toxic elements from a fluid, such as from a gas stream. For instance, the sorbent bodies may be used to remove elemental mercury or mercury in an oxidized state from a coal combustion flue gas.
Abstract:
The present invention is directed to the removal of one or more selected target materials, in particular a physiologically active compound contaminant, from various streams using a rare earth fixing agent.
Abstract:
A method of reducing nitrogen oxides (NOx) present in a lean gas stream comprising nitric oxide (NO) comprises the steps of: (i) net adsorbing NO per se from the lean gas stream in an adsorbent comprising palladium and a cerium oxide at below 200° C.; (ii) thermally net desorbing NO from the NO adsorbent in a lean gas stream at 200° C. and above; and (iii) catalytically reducing NOx on a catalyst other than the NO adsorbent with a reductant selected from the group consisting of a hydrocarbon reductant, a nitrogenous reductant, hydrogen and a mixture of any two or more thereof. A system for carrying out such a method is also disclosed.
Abstract:
A system for removing sulfur from a gaseous stream includes (a) a reaction bed for receiving the gaseous stream and for reacting sulfur dioxide and at least some of the hydrogen sulfide of the gaseous stream into elemental sulfur to provide an elemental sulfur stream and a first product stream; and (b) a circulating fluidized bed comprising (i) a first region for receiving the first product stream and using a sulfur adsorption material to adsorb and remove any remaining hydrogen sulfide from the first product stream to generate saturated sulfur adsorption material and a second product stream substantially free of sulfur; and (ii) a second region for receiving a regeneration stream and for using the regeneration stream to regenerate the saturated sulfur adsorption material and to generate the sulfur dioxide.
Abstract:
Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
Abstract:
Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, [Ce(NO3)3—Cu(NO3)2]TiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
Abstract translation:提供了用于破坏生物制剂如毒素和细菌的组合物和方法,其中待破坏的物质与细碎的金属氧化物或氢氧化物纳米晶体接触。 在各种实施方案中,金属氧化物或金属氢氧化物纳米晶体在其表面上具有稳定的反应性原子,吸附在其表面上的物质或用第二金属氧化物涂覆。 当粉末不可行时,可以将期望的金属氧化物或金属氢氧化物纳米晶体压制成颗粒使用。 优选的金属氧化物包括MgO,SrO,BaO,CaO,TiO2,ZrO2,FeO,V2O3,V2O5,Mn2O3,Fe2O3,NiO,CuO,Al2O3,SiO2,ZnO,Ag2O,[Ce(NO3) NO 3)2] TiO 2,Mg(OH)2,Ca(OH)2,Al(OH)3,Sr(OH)2,Ba(OH)2,Fe(OH)3,Cu(OH) OH)2,Co(OH)2,Zn(OH)2,AgOH及其混合物。
Abstract:
Sorbent bodies comprising activated carbon, processes for making them, and methods of using them. The sorbent bodies can be used to remove toxic elements from a fluid, such as from a gas stream. For instance, the sorbent bodies may be used to remove elemental mercury or mercury in an oxidized state from a coal combustion flue gas.
Abstract:
Disclosed is a doped cerium oxide sorbent that can effectively and regenerably remove H2S in the temperature range of about 500° C. to about 1000° C. Regenerable sorbents (e.g., ZnO, La2O3, CeO2) and methods of using them are disclosed that allow cyclic desulfurization from about 300-500° C., 350-450° C., and at about 400° C. In one embodiment, the present invention relates to a method of desulfurizing fuel gas comprising passing the fuel gas through the sorbent at a space velocity wherein the sulfur compounds are adsorbed substantially on the surface of the sorbent; and regenerating the sorbent by passing a regenerating gas through the sorbent, wherein substantially all of the sulfur compounds are desorbed from the sorbent surface. In a further embodiment, the method of desulfurizing fuel gas further comprises repeating the aforementioned steps while the fuel processor is in operation. In another embodiment, the step of passing the fuel gas may be preceded by reducing the sorbent by passing a reducing gas through the sorbent. In another embodiment, the sorbent may be fully sulfided, i.e., sulfided on its surface and bulk (internally).
Abstract:
Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.