摘要:
A method of forming a graphite-based structure on a substrate comprises patterning the substrate thereby forming a plurality of elements on the substrate. Each respective element in the plurality of elements is separated from an adjacent element on the substrate by a corresponding trench in a plurality of trenches on the substrate and each respective element in the plurality of elements has a corresponding top surface. The method further comprises segmentedly depositing a graphene initiating layer onto the top surface of each respective element in the plurality of elements; and generating graphene using the graphene initiating layer thereby forming the graphite-based structure.
摘要:
Provided is a porous carbon material having carbon nano-rods on the surface thereof. The porous carbon material has an increased specific surface area and an increased electrochemically active area, and thus may be expected to provide improved performance, when used as an electrode for electrochemical reactions. In addition, the carbon nano-rods of the porous carbon material are formed through an etching process using a catalyst for etching formed on the carbon material, and thus the carbon material may have various functions.
摘要:
This carbon nanofiber is produced by a vapor phase reaction of a carbon oxide-containing raw material gas using a metal oxide powder including a Co oxide as a catalyst, wherein at least one type selected from metal cobalt, carbon-containing cobalt metals, and cobalt-carbon compounds is contained (encapsulated) in the fiber in a wrapped state. This method for producing a carbon nanofiber includes: producing a carbon nanofiber by a vapor phase reaction of a carbon oxide-containing raw material gas using a mixed powder of a Co oxide and a Mg oxide as a catalyst, wherein a mixed powder of CoO and MgO, which is obtained by hydrogen-reducing a mixed powder of Co3O4 and MgO using a reduction gas having a hydrogen concentration in which metal cobalt is not generated, is used as the catalyst.
摘要翻译:该碳纳米纤维通过使用包含作为催化剂的Co氧化物的金属氧化物粉末的含碳氧化物的原料气体的气相反应而制造,其中,选自金属钴,含碳钴金属和钴中的至少一种 碳化合物以包裹的状态包含(包封)在纤维中。 该碳纳米纤维的制造方法包括:使用Co氧化物和Mg氧化物的混合粉末作为催化剂,通过含碳氧化物的原料气体的气相反应制造碳纳米纤维,其中将CoO和 使用通过使用不产生金属钴的氢浓度的还原气体来还原Co 3 O 4和MgO的混合粉末而获得的MgO作为催化剂。
摘要:
The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.
摘要:
A device including an array of aligned conductive channels. The conductive channels are operable for directional transport of species selected from the group consisting of electrons, ions, phonons, and combinations thereof. The conductive channels are provided for by nanofibers in a form selected from the group consisting of ribbons, sheets, yarns, and combinations thereof.
摘要:
Disclosed are methods for fabricating pyrolysed carbon nanostructures. An example method includes providing a substrate, depositing a polymeric material, subjecting the polymeric material to a plasma etching process to form polymeric nanostructures, and pyrolysing the polymeric nanostructures to form carbon nanostructures. The polymeric material comprises either compounds with different plasma etch rates or compounds that can mask a plasma etching process. The plasma etching process may be an oxygen plasma etching process.
摘要:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes. For example, in certain embodiments, a system for growing nanostructures is provided which includes a growth substrate, a region able to expose the surface of the growth substrate to a set of conditions selected to cause catalytic formation of nanostructures on the surface of the growth substrate, and a region able to expose the surface of the growth substrate to a set of conditions selected to remove nanostructures from the surface of the growth substrate.
摘要:
(Problem)In conventional method for producing artificial graphite, in order to obtain a product having excellent crystallinity, it was necessary to mold a filler and a binder and then repeat impregnation, carbonization and graphitization, and since carbonization and graphitization proceeded by a solid phase reaction, a period of time of as long as 2 to 3 months was required for the production and cost was high and further, a large size structure in the shape of column and cylinder could not be produced. In addition, nanocarbon materials such as carbon nanotube, carbon nanofiber and carbon nanohorn could not be produced.(Means to solve)A properly pre-baked filler is sealed in a graphite vessel and is subsequently subjected to hot isostatic pressing (HIP) treatment, thereby allowing gases such as hydrocarbon and hydrogen to be generated from the filler and precipitating vapor-phase-grown graphite around and inside the filler using the generated gases as a source material, and thereby, an integrated structure of carbide of the filler and the vapor-phase-grown graphite is produced. In addition, nanocarbon materials are produced selectively and efficiently by adding a catalyst or adjusting the HIP treating temperature.
摘要:
(Problem)In conventional method for producing artificial graphite, in order to obtain a product having excellent crystallinity, it was necessary to mold a filler and a binder and then repeat impregnation, carbonization and graphitization, and since carbonization and graphitization proceeded by a solid phase reaction, a period of time of as long as 2 to 3 months was required for the production and cost was high and further, a large size structure in the shape of column and cylinder could not be produced. In addition, nanocarbon materials such as carbon nanotube, carbon nanofiber and carbon nanohorn could not be produced.(Means to Solve)A properly pre-baked filler is sealed in a graphite vessel and is subsequently subjected to hot isostatic pressing (HIP) treatment, thereby allowing gases such as hydrocarbon and hydrogen to be generated from the filler and precipitating vapor-phase-grown graphite around and inside the filler using the generated gases as a source material, and thereby, an integrated structure of carbide of the filler and the vapor-phase-grown graphite is produced. In addition, nanocarbon materials are produced selectively and efficiently by adding a catalyst or adjusting the HIP treating temperature.