Atomic layer deposition of metal oxide materials for memory applications
    101.
    发明授权
    Atomic layer deposition of metal oxide materials for memory applications 有权
    用于记忆应用的金属氧化物材料的原子层沉积

    公开(公告)号:US08883655B2

    公开(公告)日:2014-11-11

    申请号:US13897050

    申请日:2013-05-17

    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies. Therefore, the metal oxide film stacks have improved switching performance and reliability during memory cell applications compared to traditional hafnium oxide based stacks of previous memory cells.

    Abstract translation: 本发明的实施例一般涉及非易失性存储器件,例如ReRAM单元,以及用于制造这种存储器件的方法,其包括用于形成金属氧化物膜堆叠的优化的原子层沉积(ALD)工艺。 金属氧化物膜堆叠包含设置在金属氧化物主体层上的金属氧化物耦合层,每个层具有不同的晶粒结构/尺寸。 设置在金属氧化物层之间的界面有助于氧空位移动。 在许多示例中,与垂直于电极界面延伸的体膜中的晶粒相反,界面是不对齐的晶粒界面,其包含平行于电极界面延伸的许多晶界。 因此,氧空缺在切换期间被捕获和释放,而空位明显损失。 因此,与以前的存储单元的传统的基于氧化铪的堆叠相比,金属氧化物膜堆叠在存储单元应用中具有改进的开关性能和可靠性。

    Resistive Random Access Memory Cells Having METAL ALLOY Current Limiting layers
    102.
    发明申请
    Resistive Random Access Memory Cells Having METAL ALLOY Current Limiting layers 有权
    具有金属合金电流限制层的电阻随机存取存储器单元

    公开(公告)号:US20140315369A1

    公开(公告)日:2014-10-23

    申请号:US14317155

    申请日:2014-06-27

    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from alloys of transition metals. Some examples of such alloys include chromium containing alloys that may also include nickel, aluminum, and/or silicon. Other examples include tantalum and/or titanium containing alloys that may also include a combination of silicon and carbon or a combination of aluminum and nitrogen. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature processing. In some embodiments, the breakdown voltage of a current limiting layer is at least about 8V. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layers while maintaining their performance.

    Abstract translation: 提供了诸如电阻随机存取存储器(ReRAM)单元的半导体器件,其包括由过渡金属的合金形成的限流层。 这种合金的一些实例包括还可以包括镍,铝和/或硅的含铬合金。 其它实例包括也可以包括硅和碳的组合或铝和氮的组合的含钽和/或钛的合金。 这些限流层可具有至少约1欧姆 - 厘米的电阻率。 即使当这些层受到强电场和/或高温处理时,也保持该电阻率水平。 在一些实施例中,限流层的击穿电压为至少约8V。 层的高电阻率允许在保持其性能的同时缩小包括这些层的半导体器件的尺寸。

    Electrode for Low-Leakage Devices
    103.
    发明申请
    Electrode for Low-Leakage Devices 有权
    低漏电极用电极

    公开(公告)号:US20140273427A1

    公开(公告)日:2014-09-18

    申请号:US14140807

    申请日:2013-12-26

    Abstract: A YBCO-based conductive material can be used as an electrode, which can contact a dielectric such as a high k dielectric. Alternatively, a material with a narrow conduction band can be used as an electrode, which can contact a dielectric such as a high k dielectric. By aligning the dielectric with the band gap of the YBCO-based electrode or with the band gap of the narrow-band conductive material electrode, e.g., the conduction band minimum of the dielectric falls into one of the band gaps of the YBCO-based or narrow-band conductive material, thermionic leakage through the dielectric can be reduced, since the excited electrons or holes in the electrode would need higher thermal excitation energy to overcome the band gap before passing through the dielectric layer.

    Abstract translation: 可以使用YBCO基导电材料作为电极,其可以与诸如高k电介质的电介质接触。 或者,具有窄导带的材料可以用作可以与诸如高k电介质的电介质接触的电极。 通过将电介质与YBCO基电极的带隙或窄带导电材料电极的带隙对准,例如,电介质的导带最小值落入基于YBCO的电极的带隙之一或 窄带导电材料可以减少通过电介质的热离子泄漏,因为电极中激发的电子或空穴需要较高的热激发能量以克服通过电介质层之前的带隙。

    Nonvolatile resistive memory element with an oxygen-gettering layer
    104.
    发明申请
    Nonvolatile resistive memory element with an oxygen-gettering layer 有权
    具有吸氧层的非易失性电阻记忆元件

    公开(公告)号:US20140268993A1

    公开(公告)日:2014-09-18

    申请号:US13838640

    申请日:2013-03-15

    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (ΔfG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.

    Abstract translation: 非易失性电阻性存储元件包括吸氧层。 吸氧层形成为电极堆叠的一部分,并且在吸电氧中比电极堆叠的其它层更热力学上更有利。 氧吸收层的氧化物的吉布斯自由能(&Dgr; fG°)比形成电极堆叠的相邻层的氧化物的吉布斯自由能更少(即更负)。 吸氧层与存在于电极堆叠的相邻层中的氧气反应,从而防止这种氧扩散到附近的硅层中,从而不期望地增加存储元件中的SiO 2界面层厚度,并且可以选择以减少这种厚度 后续处理。

    DEVICE DESIGN FOR PARTIALLY ORIENTED RUTILE DIELECTRICS
    108.
    发明申请
    DEVICE DESIGN FOR PARTIALLY ORIENTED RUTILE DIELECTRICS 有权
    器件设计用于局部方向的电介质

    公开(公告)号:US20140191365A1

    公开(公告)日:2014-07-10

    申请号:US13738127

    申请日:2013-01-10

    Abstract: Methods include forming a dielectric layer from a first material above a substrate. The dielectric layer is formed such that a preferred crystal direction for at least one electrical property of the first material is parallel to a surface of the dielectric layer. Next, forming a first and second trench within the dielectric layer wherein the first and second trenches have at least one curved portion. Forming a second material within the first trench and a third material within the second trench wherein the first material is different from the second and third materials. The first and second trenches are separated by a distance between 3-20 nm.

    Abstract translation: 方法包括从衬底上的第一材料形成电介质层。 电介质层形成为使得第一材料的至少一个电性能的优选晶体方向平行于电介质层的表面。 接下来,在电介质层内形成第一和第二沟槽,其中第一和第二沟槽具有至少一个弯曲部分。 在第一沟槽内形成第二材料,在第二沟槽内形成第三材料,其中第一材料与第二和第三材料不同。 第一和第二沟槽间隔3-20nm的距离。

    Device design for partially oriented rutile dielectrics
    109.
    发明授权
    Device design for partially oriented rutile dielectrics 有权
    部分定向金红石电介质的器件设计

    公开(公告)号:US08766404B1

    公开(公告)日:2014-07-01

    申请号:US13738127

    申请日:2013-01-10

    Abstract: Methods include forming a dielectric layer from a first material above a substrate. The dielectric layer is formed such that a preferred crystal direction for at least one electrical property of the first material is parallel to a surface of the dielectric layer. Next, forming a first and second trench within the dielectric layer wherein the first and second trenches have at least one curved portion. Forming a second material within the first trench and a third material within the second trench wherein the first material is different from the second and third materials. The first and second trenches are separated by a distance between 3-20 nm.

    Abstract translation: 方法包括从衬底上的第一材料形成电介质层。 电介质层形成为使得第一材料的至少一个电性能的优选晶体方向平行于电介质层的表面。 接下来,在电介质层内形成第一和第二沟槽,其中第一和第二沟槽具有至少一个弯曲部分。 在第一沟槽内形成第二材料,在第二沟槽内形成第三材料,其中第一材料与第二和第三材料不同。 第一和第二沟槽间隔3-20nm的距离。

    Multi-Level Memory Array Having Resistive Elements For Multi-Bit Data Storage
    110.
    发明申请
    Multi-Level Memory Array Having Resistive Elements For Multi-Bit Data Storage 有权
    具有用于多位数据存储的电阻元件的多级存储器阵列

    公开(公告)号:US20140177315A1

    公开(公告)日:2014-06-26

    申请号:US13721279

    申请日:2012-12-20

    Abstract: A resistor array for multi-bit data storage without the need to increase the size of a memory chip or scale down the feature size of a memory cell contained within the memory chip is provided. The resistor array incorporates a number of discrete resistive elements to be selectively connected, in different series combinations, to at least one memory cell or memory device. In one configuration, by connecting each memory cell or device with at least one resistor array, a resistive switching layer found in the resistive switching memory element of the connected memory device is capable of being at multiple resistance states for storing multiple bits of digital information. During device programming operations, when a desired series combination of the resistive elements within the resistor array is selected, the resistive switching layer in the connected memory device can be in a desired resistance state.

    Abstract translation: 提供了用于多位数据存储的电阻器阵列,而不需要增加存储器芯片的尺寸或缩小存储器芯片中包含的存储器单元的特征尺寸。 电阻器阵列包括多个离散电阻元件,以便以不同的串联组合方式连接到至少一个存储器单元或存储器件。 在一种配置中,通过将每个存储器单元或设备连接至少一个电阻器阵列,在连接的存储器件的电阻式开关存储器元件中发现的电阻式开关层能够处于多个电阻状态,用于存储多位数字信息。 在器件编程操作期间,当选择电阻器阵列内的电阻元件的期望的串联组合时,连接的存储器件中的电阻式开关层可以处于期望的电阻状态。

Patent Agency Ranking