Abstract:
An ion generation method uses a direct current discharge ion source provided with an arc chamber formed of a high melting point material, and includes: generating ions by causing molecules of a source gas to collide with thermoelectrons in the arc chamber and producing plasma discharge; and causing radicals generated in generating ions to react with a liner provided to cover an inner wall of the arc chamber at least partially. The liner is formed of a material more reactive to radicals generated as the source gas is dissociated than the material of the arc chamber.
Abstract:
An ion generator includes an arc chamber, a cathode that extends outward from the inside of the arc chamber in an axial direction and that emits a thermal electron into the arc chamber, a thermal reflector with a cylindrical shape provided around the cathode in a radial direction and extending in the axial direction, and a narrow structure configured to narrow a width in the radial direction of a gap between the cathode and the thermal reflector at a given position in the axial direction.
Abstract:
Methods and apparatus for a carbon ion source head. An ionization chamber is configured to receive a process gas containing carbon and a noble carrier gas; a cathode is disposed in the ionization chamber and configured to emit electrons in thermionic emission; a graphite coating is provided on at least a portion of the cathode; and an outlet on the ionization chamber is configured to output carbon ions. A method for ion implantation of carbon is disclosed. Additional alternative embodiments are disclosed.
Abstract:
Isotopically enriched silicon precursor compositions are disclosed, as useful in ion implantation to enhance performance of the ion implantation system, in relation to corresponding ion implantation lacking such isotopic enrichment of the silicon precursor composition. The silicon dopant composition includes at least one silicon compound that is isotopically enriched above natural abundance in at least one of 28Si, 29Si, and 30Si, and may include a supplemental gas including at least one of a co-species gas and a diluent gas. Dopant gas supply apparatus for providing such silicon dopant compositions to an ion implanter are described, as well as ion implantation systems including such dopant gas supply apparatus.
Abstract:
An imaging system apparatus and method of use thereof is described in combination with a co-movable charged particle beamline apparatus element, such as one or more elements held and dynamically positioned by a gantry, where the method and apparatus are optionally elements of a positively charged particle cancer therapy system. In one embodiment, an X-ray imaging element is rigidly and semi-permanently attached to and co-moved with a proton directing element. For example, as the gantry relocates one or more elements of a proton beamline arc, the X-ray beam is mechanically forced to co-relocate with the proton directing element and/or the final proton beam path.
Abstract:
A novel method and system for using aluminum dopant compositions is provided. A composition of the aluminum dopant compositions is selected with sufficient vapor pressure and minimal carbon content, thereby enabling ease of delivery to an ion implant process and substantial reduction of carbon deposition during Al ion implantation. The source material is preferably stored and delivered from a sub-atmospheric storage and delivery device to enhance safety and reliability during the Al ion implantation process.
Abstract:
A process for modifying a surface of a substrate is provided that includes supplying electrons to an electrically isolated anode electrode of a closed drift ion source. The anode electrode has an anode electrode charge bias that is positive while other components of the closed drift ion source are electrically grounded or support an electrical float voltage. The electrons encounter a closed drift magnetic field that induces ion formation. Anode contamination is prevented by switching the electrode charge bias to negative in the presence of a gas, a plasma is generated proximal to the anode electrode to clean deposited contaminants from the anode electrode. The electrode charge bias is then returned to positive in the presence of a repeat electron source to induce repeat ion formation to again modify the surface of the substrate. An apparatus for modification of a surface of a substrate by this process is provided.
Abstract:
An isotope generation apparatus is disclosed including: an ion beam source of any of the types described herein; an extractor for extracting the ion beam from the confinement region, where the beam includes a portion of multiply ionized ions in a selected final ionization state; a target including a target material; and an accelerator for accelerating the ion beam and directing the ion beam to the target. The ion beam directed to the target transmutes at least a portion of the target material to a radio-isotope in response to a nuclear reaction between ions in the selected final ion state and atoms of the target material.
Abstract:
A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.