Abstract:
An electro-optical module assembly is provided that includes a flexible substrate having a first surface and a second surface opposite the first surface, wherein the flexible substrate contains an opening located therein that extends from the first surface to the second surface. An optical component is located on the second surface of the flexible substrate and is positioned to have a surface exposed by the opening. At least one electronic component is located on a first portion of the first surface of the flexible substrate, and at least one micro-energy source is located on a second portion of the first surface of the flexible substrate.
Abstract:
A switching power supply in an integrated circuit, an integrated circuit comprising a switching power supply, and a method of assembling a switching power supply in an integrated circuit are disclosed. In one embodiment, the invention provides a three-dimensional switching power supply in an integrated circuit comprising a device layer. The switching power supply comprises three distinct strata arranged in series with the device layer, the three distinct strata including a switching layer including switching circuits, a capacitor layer including banks of capacitors, and an inductor layer including inductors. This switching power supply further comprises a multitude of connectors electrically and mechanically connecting together the device layer, the switching layer, the capacitor layer, and the inductor layer. The switching circuits, the capacitors and the inductors form a switching power supply for supplying power to the device layer.
Abstract:
Methods of forming a lens include forming components on a lower substrate. The components are sealed on the lower substrate with a sealing layer. An upper substrate is formed over the sealing layer. The lower substrate is polished to a lower lens curvature.
Abstract:
Systems and methods for monitoring body mounted/implanted sensors in combination with environmental sensors and sensors attached to person's medical/sports equipment. Data indicating a plurality of measured quantities associated with movement of a person at a time point is received. Each measured quantity within the plurality of measured quantities having been determined by a respective sensor attached to a respective location on the person or the person's environment or the person's medical/sports equipment. At least one characteristic of the person associated with the time point is determined based on analyzing the plurality of measured quantities. The at least one characteristic is stored. Recommendations for the person are determined based upon the characteristics, and a report comprising the recommendations is provided.
Abstract:
A switching power supply in an integrated circuit, an integrated circuit comprising a switching power supply, and a method of assembling a switching power supply in an integrated circuit are disclosed. In one embodiment, the invention provides a three-dimensional switching power supply in an integrated circuit comprising a device layer. The switching power supply comprises three distinct strata arranged in series with the device layer, the three distinct strata including a switching layer including switching circuits, a capacitor layer including banks of capacitors, and an inductor layer including inductors. This switching power supply further comprises a multitude of connectors electrically and mechanically connecting together the device layer, the switching layer, the capacitor layer, and the inductor layer. The switching circuits, the capacitors and the inductors form a switching power supply for supplying power to the device layer.
Abstract:
A switching power supply in an integrated circuit, an integrated circuit comprising a switching power supply, and a method of assembling a switching power supply in an integrated circuit are disclosed. In one embodiment, the invention provides a three-dimensional switching power supply in an integrated circuit comprising a device layer. The switching power supply comprises three distinct strata arranged in series with the device layer, the three distinct strata including a switching layer including switching circuits, a capacitor layer including banks of capacitors, and an inductor layer including inductors. This switching power supply further comprises a multitude of connectors electrically and mechanically connecting together the device layer, the switching layer, the capacitor layer, and the inductor layer. The switching circuits, the capacitors and the inductors form a switching power supply for supplying power to the device layer.
Abstract:
A bonded structure contains a substrate containing at least one feature, the substrate having a top surface; a first release layer overlying the top surface of the substrate, the first release layer being absorptive of light having a first wavelength for being decomposed by the light; an adhesive layer overlying the first release layer, and a second release layer overlying the adhesive layer. The second release layer is absorptive of light having a second wavelength for being decomposed by the light having the second wavelength. The bonded structure further contains a handle substrate that overlies the second release layer, where the handle substrate is substantially transparent to the light having the first wavelength and the second wavelength. Also disclosed is a debonding method to process the bonded structure to remove and reclaim the adhesive layer for re-use. In another embodiment a multi-step method optically cuts and debonds a bonded structure.
Abstract:
A method for adhesive bonding in microelectronic device processing is provided that includes bonding a handling wafer to a front side of a device wafer with an adhesive comprising phenoxy resin; and thinning the device wafer from the backside of the device wafer while the device wafer is adhesively engaged to the handling wafer. After the device wafer has been thinned, the adhesive comprising phenoxy resin may be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
Abstract:
A structure includes an electrical interconnection between a first substrate including a plurality of protrusions and a second substrate including a plurality of solder bumps, the plurality of protrusions includes sharp tips that penetrate the plurality of solder bumps, and a permanent electrical interconnection is established by physical contact between the plurality of protrusions and the plurality of solder bumps including a metallurgical joint.
Abstract:
A method for adhesive bonding in microelectronic device processing is provided that includes bonding a handling wafer to a front side of a device wafer with an adhesive comprising phenoxy resin; and thinning the device wafer from the backside of the device wafer while the device wafer is adhesively engaged to the handling wafer. After the device wafer has been thinned, the adhesive comprising phenoxy resin may be removed by laser debonding, wherein the device wafer is separated from the handling wafer.