Abstract:
An integrated circuit with memory can operate with reduced latency between consecutive operations such as read operations. At a first time, a first operation command is finished on a memory array on an integrated circuit. At a second time, a second operation command is begun on the memory array. A regulated output voltage from the charge pump is coupled to word lines in the memory array. From the first time to the second time, a regulated output voltage is maintained at about a word line operation voltage such as a read voltage.
Abstract:
A memory cell undergoing programming is determined as belonging to a particular one of a plurality of second threshold voltage ranges that divide a present threshold voltage range of the particular memory cell. Programming pulses are applied to program the particular memory cell to within the target threshold voltage range. At least one of a program voltage and a total duration of the programming pulses applied to the particular memory cell is varied, depending on the particular second threshold voltage range of the memory cell.
Abstract:
A nonvolatile memory array is divided into multiple memory groups. The nonvolatile memory array receives an erase command to erase a first set of the memory groups, and not a second set of the memory groups. The control circuitry is responsive to the erase command to erase the first set of memory groups, by applying a recovery bias arrangement that adjusts threshold voltages of memory cells in at least one memory group of the second set of memory groups. By applying the recovery bias arrangement to memory cells in at least one memory group of the second set of memory groups, erase disturb is corrected during the recovery bias arrangement, at least in part.
Abstract:
A method for storing a data value in a memory cell is provided. The data value includes one of a first data value and a second data value respectively represented by a first and a second programmable resistance ranges. The method includes, within a write cycle, storing the first data value in the memory cell by applying a first verify operation having a first verify period and a first write operation having a first write period, or storing the second data value in the memory cell by applying a second verify operation having a second verify period longer than the first verify period and a second write operation having a second write period shorter than the first write period. The write cycle is shorter than a sum of the first write period and the second verify period.
Abstract:
A sensing method for a memory is provided. The memory includes: a memory cell; a reference circuit generating a reference voltage and a clamp voltage; and a current supplying circuit receiving the clamp voltage to develop a cell current passing through the memory cell to form a cell voltage, wherein the cell voltage is used for incorporating with the reference voltage to determine the information stored in the memory.
Abstract:
The storage layer such as a nitride layer of a nonvolatile memory cell has two storage parts storing separately addressable data, typically respectively proximate to the source terminal and the drain terminal. The applied drain voltage while sensing the data of one of the storage parts depends on the data stored at the other storage part. If the data stored at the other storage part is represented by a threshold voltage exceeding a minimum threshold voltage, then the applied drain voltage is raised. This technology is useful in read operations and program verify operations to widen the threshold voltage window.
Abstract:
A method and a system for operating a memory are provided. The memory includes a plurality of memory cells which are configured to store data. The method includes the following steps. A counting number recorded in a counter is counted by 1, if the memory is written. The memory is set as a frequently using device, if the counting number recoded in the counter reaches a predetermined value.
Abstract:
A serial peripheral interface of an integrated circuit including multiple pins and a clock pin is provided. The pins are coupled to the integrated circuit for transmitting an instruction, an address or a read out data. The clock pin is coupled to the integrated circuit for inputting multiple timing pulses. The plurality of pins transmit the instruction, the address or the read out data at rising edges, falling edges or both edges of the timing pulses.
Abstract:
A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as strings which can be coupled through decoding circuits to sense amplifiers. Diodes are connected to the bit line structures at either the string select of common source select ends of the strings. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of conductive lines arranged as word lines which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the conductive strips on the stacks and the conductive lines.
Abstract:
An integrated circuit device comprises a semiconductor substrate, a first memory block on the substrate comprising NAND memory cells, a second memory block on the substrate comprising NAND memory cells, and controller circuitry. The first and second memory blocks are configurable to store data for a first pattern of data usage in response to a first operation algorithm to read, program and erase data, and for a second pattern of data usage in response to a second operation algorithm to read, program and erase data, respectively. The controller circuitry is coupled to the first and second memory blocks, and is configured to execute the first and second operation algorithms, wherein a word line pass voltage for read operations applied in the first operation algorithm is at a lower voltage level than a second word line pass voltage for read operations applied in the second operation algorithm.